
Comparison and Analysis of the Three Programming 
Models in Google Android 

Xi Qian 

Intel Corporation 

xi.qian@intel.com 

 Guangyu Zhu 

Intel Corporation 

greg.zhu@intel.com 

Xiao-Feng Li 

Intel Corporation 

xiao-feng.li@intel.com 

 

Abstract  

Smartphone and tablet are becoming more like personal 
computer. It is important to understand the pros and cons of 
different programming models in these kinds of mobile devices. 
In order to fully understand their implications to the platform 
architecture and their technical correlation, we develop variants 
of the same representative Android application in all of the three 
sets of APIs provided in Google Android, i.e., the Java SDK, 
C++ NDK, and the new powerful Renderscript. Based on the 
same application, we conduct detailed apple-to-apple analysis, 
with focus on hands-on programming convenience, runtime 
behavior, and technical correlation of the different programming 
models. We find that the current programming models provided 
in Android can be improved. We propose a unified solution that 
we expect to satisfy the requirement of both programmability 
and performance as a programming model, and also maintain 
the applications’ security and portability when deployed in 
mobile devices. 

Keywords Programming language, programming model, 
mobile platform, managed runtime 

 

1. Introduction 

Smartphone and tablet are becoming more like personal 
computer. They provide abundant and powerful APIs for the 
programmers to develop all kinds of attractive applications [1]. 
For example, Apple iPhone has SDK providing C-class 
programming language support [2]. Google provides Android 
SDK supporting Java programming API [3]. 
  Different programming models require different system 
implementations to support both the application development in 
host machine, and the application execution in client device. 
More importantly, different programming models have different 
implications in programming convenience, execution efficiency, 
and system requirement. To deliver the best user experience to 
end users, it is important for the system software designers to 
understand these implications. 
  To investigate the different programming models, it is 
desirable to compare them apple-to-apple with other 
non-essential factors fixed. Android provides a good 
environment for such a study, since Android has three 
programming models in the same system: Java support in SDK 
[3], C++ support in NDK [4], and Renderscript support [5]. All 
the three programming models can be used to develop 
applications of similar functionalities, while the developers 
could expect some differences in variants of the same 
application developed in different models. 
  In order to fully understand the pros and cons of each 
programming model, their implications to the platform 
architecture, their technical correlation and trend, we develop 
variants of the same representative Android application in all of 

the three APIs. Then we conduct detailed apple-to-apple 
analysis based on the same application. In our analysis, we find 
that, each of the three models has its respective advantages and 
disadvantages. There is not a single model that can satisfy all 
the requirements from mobile applications for programmability, 
portability, security and performance. 
1. The SDK variant is quite easy to develop, but it gets pretty 

low performance compared to its NDK and Renderscript 
counterparts, even after careful optimizations in the 
application code.  

2. The NDK variant can achieve much better performance 
than the SDK variant. NDK’s portability across different 
microarchitectures is an issue. 

3. Renderscript gets the best performance across devices. Its 
memory allocation model complicates the programming, 
and makes the porting of legacy code difficult. 

  The major contributions of this work are the followings: 
1. Hands-on comparison of the programming convenience 

and characteristics of the three Android programming 
models; 

2. Deep analysis in the runtime behavior of the same 
applications in different programming models;  

3. Investigation in the pros and cons of the different models, 
and their correlations. Based on the study, we propose a 
unified model. 

  The rest of the text is organized as follows. We discuss related 
work in section 2. Then we introduce our experiment setup in 
the study in section 3. We compare the Android programming 
models in various aspects in section 4 through section 7, 
including the differences in working flow, execution model, 
performance, development and deployment. Based on the 
investigation, we propose a unified programming model in 
section 8. We summarize our work in section 9. 

 

2. Related Work 

The number of applications available to a platform has been an 
important indicator for mobile systems since Apple launched 
their App Store. Platform vendors always try to attract 
developers to their platforms. There are many factors that can 
impact a developer’s choice, such as the market share, platform 
stability, development cost, etc.  According to D. Gavalas and 
D. Economou [1], the programming model of a platform 
significantly impacts the application quality and development 
cost. 
  Different programming languages require different effort to 
develop same application. Prechelt [6] studies 80 
implementations of a phonecode program in seven languages. 
The result shows that designing and writing the program in 
script languages usually takes no more than half as much time 
as writing in C, C++ and Java. Besides the language diffrence, 
API support difference also impacts programming effort. For 
example, Gavalas and Economou [1] find that Android 
applications are easier to develop than Java ME, though both 



use Java language, due to Android API’s improved compatibility 
with the Java SE API. Familarity to a language definitely 
impacts a developer’s choice as well. According to TIOBE 
Programming Community Index [7], Java and C stay at the top 
two positions for quite a period. C#, C++ and Object-C take the 
following three positions. 
  Given the limited resource of mobile systems, different 
programming models have implications on different 
performance and power efficiency. Some research [8] on 
desktop and server environment claims that the performance gap 
between Java and other native languages such as C and 
FORTRAN is very small, while some other research suggests 
different result. At least for specific domain [9], it is believed to 
have significant performance difference between Java and 
C/C++. More recent study on Android platform [10] shows that 
applications written in C/C++ do achieve better performance 
than those in java. Further study shows that the NDK 
application performance can be further improved by optimizing 
the JNI mechanism [11].  

 

3. Experiment setup 

In order to compare the three programming models, we choose 
to develop representative applications in all the models, and run 
them in actual Android devices. Throughout the process, we get 
hands-on experience in application development, operation and 
execution. 
  The application we present in this investigation is Balls [5]. 
The application behaves like a real Android game. It gets input 
from sensors (orientation and touch), conducts physics 
computations and draws resulted graphs on the screen. Balls 
simulate the movement of several hundred of bodies according 
to the gravity to the ground and repulsion among them. It is like 
the well-known scientific problem N-Body. The bodies in Balls 
have initial states when the application is launched and then 
move around autonomously. Finger can touch a body to force it 
move straightly thus disturb other bodies’ movement through 
the repulsion. Figure 1 shows a screen snapshot of Balls 
application in execution. 

 
Figure 1. A screen snapshot of Balls application in execution 

  As common Android games, there are two main logical 
components in Balls. One is the computes part, which conduct 
the physics computation based on the movement of the bodies; 
the other is the graphics part, which draws the bodies on the 
screen.  
  The major differences in the programming models can be 
investigated according to how the two logical components – 
computes and graphics - are processed. Next we go through the 
differences one by one in details. 

 

4. Working Flow Comparison 

4.1 Android SDK working flow 

When Google first released Android in year 2007, it provided 
only one programming model with Android SDK. It uses Java 

as the application programming language. Java has its natural 
advantages. First, it has the largest developer community than 
any other languages [7]. Second, Java is portable across 
different platforms as long as its runtime engine is available. 
Third, with its proven type-safety and verification mechanism, 
Java has language-level security, which is important for mobile 
devices that are mostly private.  
  The source code developed in Android SDK is compiled to 
bytecode on host machine and packaged into an application. 
Users can download the application from Google Android 
Market and then install into Android devices. When the 
application is launched, Android execution engine DalvikVM 
can interpret the bytecode or use a JIT-compiler to compile the 
bytecode into machine instructions and then execute them. The 
process is shown in Figure 2. 

 
Figure 2. Android SDK working flow 

  Android SDK programming model is very much like the 
traditional J2SE programming model, except that Android SDK 
does not provide J2SE-compatible API but provides complete 
framework APIs for applications to work with the mobile 
system. The "Write once, run anywhere" feature of Java is also 
valid for Android SDK that the programs developed in it can 
theoretically run across different Android devices.  

4.2 Android NDK working flow 

Android NDK was first provided in June 2009 for developers to 
build library in C/C++. NDK provides a few advantages over 
SDK. First, Android SDK did not have OpenGL ES2.0 support 
in the early releases, which is critical for graphic performance. 
Second, developers have already accumulated lots of code in 
C-class languages, including those for Apple iPhone. It is 
unlikely for them to rewrite all their code in Android SDK. 
Android NDK allows developers to easily port the legacy code 
to Android devices. Third, in certain segments like mathematics 
computation, Java-programmed application still has gap to their 
C/C++ counterpart. 
  Android NDK does not provide complete programming API 
for Android application. Code developed in Android NDK is 
compiled to target machine code and packaged into apk. It has 
to be used with Java code explicitly or implicitly in order to run 
in Android device. When the application runs on mobile devices, 
the native code is loaded and executed through JNI (Java native 
interface). NDK working flow is shown in Figure 3. 

 
Figure 3. Android NDK working flow 

  The first release of Android NDK provides rather limited API. 
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Starting from revision 5, it supports more framework APIs to 
access resources. It is even possible to have native-only Android 
application without explicitly writing Java code, though that 
seriously limits the available functionalities to the application 
compared to that written in SDK, because most of the Android 
features are provided through SDK API such as services and 
content providers, etc. Using JNI can be a solution to access the 
SDK API from native code, but that just calls for unnecessary 
troubles.  
  To make a NDK application run across devices of different 
CPU architectures, the developer has to build different versions 
of the native library for the targeted ABIs (application binary 
interface). The developer can choose to package all the 
compiled versions into one application, which is called “fat 
binary”. When installed into a device, only one version of the 
native library in the fat binary is used. 

4.3 Android Renderscript working flow 

Renderscript is a new programming model introduced since 
Android 3.0. It tries to solve the performance problem of SDK 
with Java and the portability problem of NDK with C/C++.  
  Renderscript chooses C99 as the base programming language, 
and introduces certain additional programming guidelines. The 
key idea is to compile Renderscript program into an 
intermediate representation that is close to the target architecture. 
Application is packaged and distributed with the intermediate 
representation, and the runtime engine in the device compiles 
the intermediate representation into machine instructions. In this 
way, the developer can use the flexibility in the C-like language 
for data manipulation, and the developed application is portable 
across Android devices. In other words, the position of 
Renderscript in Android is much like Android NDK, while its 
runtime philosophy is similar to Android SDK. As common 
Android NDK applications, Renderscript applications cannot 
run alone without Android SDK code. 
  The source code of Renderscript is compiled by C99 frontend 
compiler Slang into two targets: LLVM bitcode as the 
intermediate representation of the program, and reflection Java 
classes as the glue layer between the Android SDK Java code 
and the Renderscript code. The reflection Java code is used by 
the SDK code to invoke Renderscript function, manage 
Renderscript memory allocation and write Renderscript 
variables.    

Figure 4. Android Renderscript working flow 

  On the first execution of Renderscript application in the 
device, the LLVM bitcode backend compiler libbcc compiles 
the bitcode into machine instructions and caches them. Later 
executions reuse the cached version unless the application is 
modified, thus trigger another compilation. Android 
Renderscript working flow is illustrated in Figure 4. 
   Renderscript provides API for computes and graphics. The 
computes part is a subset of C99 while it adds vector type so as 

to facilitate the array or matrix computations. The graphics part 
is roughly a wrapper of OpenGL ES2.0.  

 

5. Execution Model Comparison 

5.1 Renderscript Execution model 

With Renderscript programming model, an application can 
basically be partitioned into two levels: the higher level 
SDK-developed code, and the lower level 
Renderscript-developed code.  
  The SDK-developed higher level code takes care of 
supporting functions to the application such as resource 
management, activity life-cycle and windowing system. It 
provides the RSSurfaceView as the drawing context to the 
application to draw upon.  
  The low level Renderscript code implements the major 
features of the application, including both the computes part and 
the graphics part. They are triggered or invoked by the higher 
level Java code through JNI with the reflection Java classes and 
libRS native engine staying aside of the JNI border. The entire 
rendering process is managed by a system built-in RS Proc 
thread so as not to block the main activity’s response to the 
device user. When the renderer finishes the physics computation, 
it invokes the graphics part to draw the bodies on the 
RSSurfaceView context through OpenGL ES.   
  Renderscript provides rsForEach() API so that the render can 
distribute the physics computation to multiple helper threads. 
Figure 5 shows the execution model of Renderscript. 

 

Figure 5. Android Renderscript execution model 

5.2 NDK execution model 

Balls implementation in NDK is very similar to that of 
Renderscript. It also has two levels: The higher level 
SDK-developed code, and the lower level NDK-developed 
code.  
  Same as Renderscript execution model, the SDK-developed 
higher level code in NDK also takes care of supporting 
functions to the application such as resource management, 
activity life-cycle and windowing system. It provides the 
GLSurfaceView as the drawing context to the application to 
draw upon.  
  The lower-level NDK-developed code is no different from 
other native applications: It almost controls everything it wants, 
as long as that is supported by NDK API. Android NDK 
provides a libc-like library bionic and a pthread implementation. 
NDK has access to OpenGL ES for graphics. In this way, it is 
easy for the lower level NDK code to implement both the 
computes part and the graphics part. 
  The major differences between NDK and Renderscript are 
two things. First, NDK model is much cleaner than the 
Renderscript model, just as a traditional Java application plus its 
native library. There is no special glue layer between Java and 
native code. The native code has its full control of memory 
allocations based on JNI or malloc. It does not depend on other 
code to manage its memory allocations. Second, with NDK 
model, the application higher level code creates a 
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GLSurfaceView as the graphic context. GLSurfaceView has its 
built-in asynchronous threading mechanism, so NDK model 
does not require the native code to have a separate thread (i.e., 
RS Proc thread in Renderscript) to manage the rendering 
process.   

 

Figure 6. Android NDK execution model 

  In order to use native renderer implementation, the renderer 
class in Java code is only a simple wrapper of the native 
renderer. The native renderer conducts the physics computation 
and draws balls on screen for each frame. The execution model 
of Android NDK is shown in Figure 6. 
  In actual coding for Balls, we implement two NDK versions. 
The single-thread version conducts physics computation on the 
same thread as the native renderer. And the multi-thread version 
implements a thread pool with pthread API and dynamically 
distributes the physics computation to the threads in the pool.  

5.3 SDK execution model 

We implement the SDK version by moving all the native part in 
NDK code to Java. We still use GLSurfaceView for the graphics 
context since that is the class for OpenGL graphics. The Java 
Renderer now is no longer a wrapper, but the real entity 
performing the physics computation. Since Android SDK 
provides full OpenGL ES2.0 support, we only need to invoke 
the SDK API to access OpenGL support for graphics. The 
Android SDK execution model is shown in Figure 7. 
  As in the NDK version, GLSurfaceView already has built-in 
support for a separate thread to execute the entire rendering 
process, so as to avoid blocking the main activity thread’s 
response to the device user. When the computation tasks are too 
heavy and inherently parallel, it is desirable to execute them in 
multiple threads, instead of using the same GLSurfaceView 
thread. So we have two SDK versions of Balls. The 
single-thread version performs the physics computation in the 
context of the renderer. The multi-thread version computes the 
physics in multiple threads by using Android built-in thread 
pool executor class. The renderer distributes the computes tasks 
to the pool dynamically. 

 

Figure 7. Android SDK execution model 

6. Performance Difference and Analysis   

6.1 Performance metric 

We evaluate the three variants of Balls on an Android tablet with 
Honeycomb 3.2 OS. We mainly measure the FPS (frames per 
second) value of the application as the major performance 
metric. We choose FPS as the major metric because Android is 
mainly used for user interactions. The user experience of 
Android is largely decided by the smoothness and 
responsiveness of the graphic user interface that is visible to end 
user. For Balls, FPS is the best metric to reflect user experience. 
  The maximal FPS that is achievable in a platform is decided 
by the platform. Common nowadays devices set their maximal 
platform FPS around 60, because that is believed to be perfect 
for common people’s visual cognitive ability, i.e., higher value 
may not be perceived by more smooth by common people, 
hence not worth the hardware investment. 
  The device in our experiment sets 60 as the maximal FPS 
value. That means, the device has 1/60 second (16.7ms) time for 
the computation of one frame. When the computation for one 
frame is faster than 16.7ms, the device still gives 60 FPS since 
that is the maximal. When the computation for one frame is 
longer than 16.7ms, say T, the device gives FPS value of 1/T.  
  As we describe earlier, Balls has mainly two logical 
components. One is computes and the other is graphics.  
  The computation amount in Balls’ computes part is mainly 
decided by the number of bodies, which is close to a linear 
relation. We can increase or decrease the computation amount 
by simply adding or reducing the number of bodies in the 
application. The tablet we use has dual-core CPU processor 
hence dual-core parallelism support. 
  The computation amount in Balls’ graphics part is mainly 
with OpenGL drawing. The tablet in our experiment has GPU 
(graphic processing unit) hardware that can offload the OpenGL 
computations from CPU. GPU and CPU can run in parallel if 
the software supports. In current Android design, the screen 
display mechanism uses two or more buffers so that the 
computation/composition part and the graphics drawing part can 
be executed in parallel to certain extent. In this way, the major 
computation of the graphics part is not on the critical path of 
CPU computation. The remaining computation part of the 
graphics part on CPU mainly consists of OpenGL API access 
and the driver invocation. Similar to the computes part, the 
graphics part is also related to the number of bodies, since the 
numbers of bodies decide the number of vertexes. At the same 
time, larger number of bodies incurs higher consumption of 
memory bandwidth.  

6.2 Initial performance 

Figure 8 shows the initial performance of Balls in three 
programming models. The initial version does not explicitly 
develop multiple worker threads or include any design 
optimizations, so the SDK and NDK versions are single 
threaded, while the RS version has built-in RsForEach primitive 
that provides implicit multiple worker threads. We can see that 
all of them can get the maximal FPS value 60 with a certain 
number of bodies. For description simplicity, we use term 
“saturation point” refers to the maximal number of bodies when 
the application can sustain 60 FPS. This is an important data to 
understand the trend of the behavior. The saturation points for 
the initial SDK, NDK and RS (Renderscript) versions are 50, 
500 and 700 bodies respectively. The SDK version drops its 
performance drastically with more bodies, while the NDK and 
RS versions have almost linear performance degradation with 
more bodies. 
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Figure 8. Performance of Balls with initial version. 

  The major difference between NDK and RS is due to the 
threading model. NDK is single-threaded, while RS is implicitly 
multi-threaded. Next we have a look at the major difference 
between SDK and NDK, when both are single-threaded. 

6.3 Impact of garbage collection (GC) 

To find out the root cause of the low performance of the SDK 
version Balls, we collect the time ratio spent in Dalvik 
execution engine. We partition the time into two categories. One 
is for physics computation; the other is for runtime garbage 
collection. As shown in Figure 9, we find almost half of the 
Dalvik time is spent in GC.  

 

Figure 9. Time partitioning in the initial SDK version of Balls. 

  We find the root cause of heavy garbage collections is the 
common Java programming convention, where an arithmetic 
operation usually creates a new object and return it as the 
operation result, as shown in the code snippet below for the add 
operation of type Float2. Float2 holds two float variables x, y. 

 public Float2 add (Float2 b) { 

  return new Float2 (x + b.x, y + b.y); 

} 

  To reduce the GC time, we change the Float2 add operation 
into an accumulation instead of creating new an object, as 
shown below. 

 public void add_by (Float2 b) { 

  x = x + b.x; 

  y = y + b.y; 

} 

  With this change, the GC overhead is significantly reduced 
and the FPS value of Balls is improved. Actually, we effectively 
eliminate any collection occurrence throughout Balls 
measurement. As shown in Figure 10, with same number of 
bodies (same X-axis value), the FPS value is improved a lot. For 
example, with 300 bodies, the original version has only FPS 

value 2, while the optimized version has FPS 60. The saturation 
point is changed from 50 to 300 bodies. This means that, within 
1/60 second time, the original version can only compute 50 
bodies, while the optimized version can process 300 bodies. The 
degradation of the optimized SDK version is also much flatter 
than before. In following text, when we refer to SDK version, 
we mean the one with the optimization. 

 

Figure 10. Performance improvement after object optimization for GC. 

6.4 Impact of multiple worker threads 

We also develop the multiple worker threads variants for SDK 
and NDK versions. For SDK version, we use the Java thread 
pool executor class. For NDK version, we use the pthread API 
in bionic library. Figure 11 shows how the performance is 
changed with multiple worker threads (MT). 
  With multiple worker threads, both SDK and NDK versions 
have obvious performance improvement. The SDK MT version 
pushes the saturation point from the original 300 to current 400 
bodies. The NDK MT version pushes from 500 to 700 bodies.  
  This experiment means two things: 
1. The multiple worker threads can effectively improve 

Android application’s performance with the dual-core 
hardware support. 

2. The application’s performance can be improved by either 
reducing the computation amount of one body, or 
improving the throughput of the system while keeping the 
computation amount unchanged.  

 

Figure 11. Performance improvement with multiple worker threads 

  Note, Android system is inherently designed with 
multiple-process and multiple-thread support. An application 
without multiple worker thread still could benefit from 
dual-core hardware, but that is out of the scope of this work. 
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6.5 Runtime design differences 

Figure 12 shows the best achieved performance with the three 
programming models. We find that the NDK and RS versions 
are quite close in performance, while the SDK version lags far 
behind. The major differences are as follows. Next subsection 
has more data discussions. 
1. The SDK version uses Java classes for mathematics, 

depending on runtime engine for data layout and memory 
management. NDK and RS versions use C-class language 
that has direct data layout and manipulation. 

2. The SDK version uses just-in-time compiler to generate 
machine instructions at runtime. NDK version uses offline 
compiler in the host development machine to prebuild the 
binary. RS version uses first-execution-time compilation 
to generate the machine instructions, and the binary is 
cached for later invocations.  

3. The SDK version passes the data back and forth between 
the physics computation and OpenGL drawing across JNI 
interface. NDK and RS versions keep the data mainly 
within the native layer. 

  These design differences lead to the performance differences 
between the SDK version and the other two versions. From 
runtime design point of view, all of them implement the drawing 
on GLSurfaceView. SDK mainly does that in Java code, while 
the other two versions do in native code. This conclusion sounds 
confusing because RS version is not native code. But from 
performance point of view, RS version is not far from native 
code in terms of data manipulation and OpenGL access.  

 

Figure 12. Best Balls’ performance with the three models 

  The major runtime difference between RS and NDK is that, 
RS is not direct binary code in the device. This difference is not 
significant enough to be visible in Balls’ performance. This as a 
side fact proves that the advanced compiler optimizations are 
not always critical for mobile applications. 

     

Figure 13. Performance comparison between faster interpreter and JIT 
compiler 

  Although the performance difference between RS and NDK 
is minimal, we still can see that in the figure. The reason for RS 
has a very subtle advantage is that, RS has built-in vector type 
support, which makes the large volume of vector processing fast. 
It is actually easy for NDK to implements vector class. 
  Although our data shows that advanced compiler 
optimizations may not be critical for mobile applications, we 
want to understand if that is true between compiler and 
interpreter. Dalvik has a fast interpreter that is written in 
assembly code for target architecture. We compare the 
performance between the fast interpreter and the JIT compiler in 
Figure 13. For every configuration, the compiler run always gets 
better performance than the interpreter run, though the gap 
becomes smaller with more bodies.  

6.6 Computation intensity 

To really understand the runtime behavior of Balls under 
different programming models, we measure the time spent by 
each version in drawing one frame and the CPU utilization 
ratios, shown in Table 5 - Table 4. This reflects the computation 
intensity on the dual-core CPU, which also gives us an 
impression about the room of further optimization. 
  The frame time in a configuration is the reciprocal of the FPS 
value achieved by that configuration. For example, when the 
configuration achieves 60FPS, the frame time is 16.7ms. We 
partition the time of one frame into computation part and the 
rest. We only show the computation part in tables below since 
the rest time can be simply deducted.  
  CPU utilization refers to how much time the CPU is actively 
working. If the CPU utilization is 50%, it means only half of the 
processor resource is used. In other words, half of the processor 
resource is not used, or idle. If it is a dual-core processor, 
possibly there is one core unused. 
  Since the device display system only refreshes the screen at a 
maximal 60 FPS frequency, that means, if the processor can 
finish a frame’s computation within 1/60 second (16.7ms), the 
application can achieve the maximal FPS. There are two cases 
regarding the frame computation time. 
  In case one, if the application’s frame computation time T is 
less than 16.7ms, the application can get 60 FPS, but no more, 
because 60 FPS is the platform maximal. Then within each 
frame, there is a period of (16.7 – T) when the processor does 
not contribute or is idle. The shorter T is, the longer the idle 
time is, and the smaller the CPU utilization is. In this situation, 
although the FPS is no longer increased, the device power is less 
due to the longer CPU idle time. 

  Table 1. Computation intensity of SDK-ST Balls 

SDK-ST version of Balls 

Number of Balls 300 400 500 600 700 800 900 

FPS value 60 43 27 18 11 8 7 

CPU utilization 37% 48% 49% 49% 49% 49% 49% 

Frame-time (ms) 16.7 23.2 37.5 55.4 89.4 121.2 140.5 

Computation (ms) 12.4 22.2 36.2 54.0 87.4 118.9 138.0 

Table 2. Computation intensity of SDK-MT Balls 

SDK-MT version of Balls 

Number of Balls 300 400 500 600 700 800 900 

FPS value 60 60 48 29 21 17 14 

CPU utilization 46% 77% 88% 90% 90% 92% 92% 

Frame-time (ms) 16.7 16.7 20.7 34.1 48.4 58.8 74.0 

Computation (ms) 8.2 12.3 19.5 32.7 46.8 56.9 71.9 
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Table 3. Computation intensity of NDK-ST Balls 

NDK-ST version of Balls 

Number of Balls 300 400 500 600 700 800 900 

FPS value 60 60 60 46 34 26 20 

CPU utilization 25% 33% 45% 49% 49% 49% 49% 

Frame-time(ms) 16.6 16.7 16.6 21.6 29.5 38.1 49.3 

Computation(ms) 8.6 11.0 15.2 21.3 29.3 37.9 49.2 

Table 4. Computation intensity of NDK-MT Balls 

NDK-MT version of Balls 

Number of Balls 300 400 500 600 700 800 900 

FPS value 60 60 60 60 60 50 39 

CPU utilization 34% 43% 53% 70% 86% 92% 92% 

Frame-time(ms) 16.7 16.6 16.6 16.6 16.7 20.2 25.6 

Computation(ms) 6.0 8.0 9.7 11.2 15.7 20.0 25.4 

Table 5. Computation intensity of Renderscript Balls 

Renderscript version of Balls 

Number of Balls 300 400 500 600 700 800 900 

FPS value 60 60 60 60 60 50 40 

CPU utilization 34% 44% 54% 68% 88% 94% 96% 

Frame-time(ms) 16.7 16.7 16.7 16.7 16.7 20.1 24.8 

Computation(ms) 6.6 7.4 9.0 12.2 15.7 19.8 24.3 

  In case two, if the application’s frame computation time T is 
more than 16.7ms, the application cannot get the perfect 
maximal FPS value, but gets 1/T FPS. In this situation, the 
application computes slower than the display refresh rate. It has 
to keep busy in frame computation. In a single-core processor, 
the CPU utilization should be close to 100%. Otherwise, if the 
CPU utilization is obviously lower than 100%, there must be 
thread synchronization or I/O blocking optimizations. In case of 
dual-core processor, to achieve 100% CPU utilization needs to 
have no less than two parallel working threads. If there is only 
one active working thread, the maximal CPU utilization it can 
achieve in a dual-core platform is 50%.  
  In tables, the column for the saturation point of each version 
is shown in dark color. We can see in NDK-ST and SDK-ST 
versions that, the CPU utilization ratios are always lower than 
50%. After the saturation points, the ratios become 48%-49%. 
This clearly indicates the single worker thread nature of the two 
versions. With NDK-MT and SDK-MT versions, the CPU 
utilization ratios beyond the saturation points are in the range of 
88%-92%. As a contrast, the RS version has CPU utilization 
ratio in range of 94%-98% after the saturation point. That means, 
the parallelism we exploit with the thread pool in Java and 
pthread is not as sufficient as the RS built-in support. 
  We also observe that the computation time beyond the 
saturation points. The computation time in all the versions is 
almost the same as the frame time. That means, as long as the 
CPU is working, it is working in the frame computation. It does 
not waste CPU resource in other thing. If we compare the 
computation time between the single-thread and multithread 
version pairs, we can find that, SDK-MT’s computation time is 
about half of SDK-ST’s, and NDK-MT’s computation is also 
about half of NDK-ST’s. This is not surprising, because the 
physics computation is quite parallel in nature. It also indicates 
that the thread pool implementations in SDK and NDK versions 
have good scalability. 

 

7. Differences in Development and Deployment 

Above we analyze the differences in the three programming 
models from a system designer’s point of view. In this section, 
we have a comparison from an application developer’s point of 
view.  
  Firstly, we summarize the programming API differences we 
experience with Balls development in Table 6. We classify the 
API differences into five categories: user interaction and 
resource management; graphics (i.e., OpenGL support); 
computes (i.e., vector support); worker threads pool; and library 
extensibility. 
  From the table, we can see that the major drawback of SDK 
development is the lack of vector type support. We have to use 
Java class to simulate. Except that, all the rest API support with 
SDK is complete and convenient. The vector support is actually 
not only an API issue, but also a performance issue, as our data 
show in early section. 

Table 6. Programming API differences 

 
User interaction and 

Resource management 
Graphics 
(OpenGL) 

Computes 
(Vectors) 

Worker thread 
pool 

Library 
extensibility 

SDK Full support Full support No Full support Java support 

NDK No Full support Can support Can support C++ support 

RS No Most support Built-in Built-in No 

  NDK and RS do not have support for user interaction and 
resource management. They have to work with Java code to 
have those functionalities. NDK and RS can get similar 
performance in our experiment, while NDK needs extra 
development efforts, because it does not have built-in vector 
type and worker thread supports. 
  Next we compare the memory management API in the three 
programming models in Table 7. We classify the API differences 
into three categories: memory allocation; memory release; and 
data sync between GPU and CPU. 

Table 7. Memory management API differences 

 Memory  
Allocation 

Memory  
Release  

Data sync between  
CPU and GPU 

SDK Automatic Automatic Manual 

NDK Manual Manual Manual 

RS Manual in Java layer Automatic RS Sync API 

  With NDK, one has to do everything manually with the full 
control of memory. This is tedious and error-prone as proved by 
tons of literatures. SDK has garbage collection support so the 
allocation and release is done automatically. Neither NDK nor 
SDK has the data synchronization support between CPU and 
GPU, which has to be done manually.  
  RS is quite different in its memory management API. It has 
the design philosophy that RS application could run on 
heterogeneous architecture. For example, the same RS code can 
be compiled to run on CPU or GPU based on its runtime 
strategy. So RS API is designed with heterogeneity support in 
mind. This is not the case for SDK (Java) and NDK (C++). RS 
design philosophy is reflected in its memory management API. 
First, RS provides API for data synchronization between CPU 
and GPU. Second, RS does not give the freedom of memory 
allocation in RS native code because that would bind the 
memory to CPU or GPU statically. RS only allows memory 
allocation in Java layer, which is independent of the underlying 
architecture. Third, to correspond to the Java layer memory 
allocation, RS provides automatic memory release with 
reference counting. Given the fact that the memory allocation 
and assignment requests are both raised in the main thread as an 
asynchronous command to RS rendering thread, it is difficult for 
developer to change allocation during physics computation.  
  In application deployment stage after it is developed, the 
installation package size is important for user experience. The 



default NDK development tool chain builds native binary for 
every supported ABI target and package all of them into the 
final application. That increases the size of application package 
APK (Android application package). At the same time, Java 
bytecode is usually much more succinct than the generated 
machine instructions. As a result, the size of NDK Balls is 2.4 - 
2.7 times of that of SDK and RS Balls, as shown in  
Table 8. As a workaround for portability, “fat-binary” is not 
really desirable. 

Table 8. APK size of different versions of Balls 

 SDK NDK RS 

Package size(KB) 25 60 22 

 

8. Unified Programming Model 

Based on the comparison and analysis above, we see that each 
of the three models SDK, NDK and Renderscript has its 
respective advantages and disadvantages. There are a few 
common pursuits in all the Android programming models. 

A. The model should be easy to use for developers. 

  This goal includes two aspects: the language and the APIs. In 
language aspect, Java in SDK, C++ in NDK, and C99 in RS are 
all familiar to the developer community after years of evolution. 
In API aspect, people expect automatic memory management 
and library extensibility. Extensibility is important to port 
current physics engines to Android. Only SDK can satisfy both.  

B. The model should provide device-portable solution. 

  SDK is portable by nature with Java language and runtime 
support. NDK is not portable by nature with precompiled binary 
unless fat-binary is provided as a work-around. RS compiles the 
C99 code into LLVM bitcode, which makes it portable in 
Android devices that have RS runtime support. 

C. Applications developed in the model should have 
reasonable security warranty. 
  Security is always critical for software. It is even more 
critical for software in mobile devices, because they usually 
carry the users’ sensitive information. Java with its strong typing 
and verification mechanism provides high level of security at 
language level. C++ does not have similar concepts. RS does 
have security advantage over C++ with its strict memory 
management. But RS does not put strong restrictions on pointer 
usage. For example, programmer can simply assign a random 
number to a pointer without encountering build-time failure. On 
the other hand, at system level, Android smartly leverages the 
underlying Linux’s support in process isolation and user access 
control, which effectively prevents a problematic application 
from making system-wide destructive impact. But that cannot 
solve all the potential issues that a casual user could meet, if the 
user is not cautious enough in granting privilege permissions. 

D. Applications should have reasonable performance for both 
computes and graphics. 
  Performance requirement for computes need vector type 
support and worker thread pool. Only RS has both. Performance 
requirement for graphics need OpenGL ES. RS does not have 
full support while SDK and NDK have. It is also important to 
avoid lots of data movement back and forth across JNI or 
between CPU and GPU. Since graphic data has to finally stay in 
OpenGL domain in native layer, it is desirable to have a solution 
to either keep the data in native layer or avoid the data copying 
across JNI. Current SDK does not provide the solution. 
  The issues in different models are summarized in Table 9. 
  We argue that, some of the issues can be resolved easily or 
not so easily, while some other issues can be really difficult to 
resolve. The graphic data management issue with SDK is hard 
to be eliminated without changing the JNI implementation. 

Library extensibility in RS is not going to be as convenient as 
Java and C++.  

  Table 9. Issues in current Android programming models 

 Programmability portability Security Performance 

SDK no issue no issue strong vector processing, 
data management 

NDK memory management fat binary weak vector processing, 
thread pool 

RS memory allocation, 
library extensibility no issue weak full OpenGL support 

  In this regard, we propose a new programming model that 
helps to remove the critical issues in current models by 
combining of the existing models. It introduces vector type in 
Java layer, and defines runtime to eliminate the data copying 
across JNI as RS does. The new model compiles NDK C++ 
code into intermediate representation as RS does. It also 
introduces vector type and implements worker thread pool API 
in NDK. In this way, developers do not need to write separate 
C99 code with RS API but keep the benefits of RS. 
  The challenge in the new model is mainly with security. To 
keep the C++ language means to keep its security risk as well. 
The risk can be largely reduced by limiting the usage of pointer, 
in both data access and function access. Also the API should be 
limited to secure ones especially for those memory related 
operation such as string manipulation functions. 
  The limited C++ is very similar to subset of GO language 
[12]. GO language keeps pointer for performance while 
removes pointer arithmetic. It distinguishes pointer from normal 
integer with tag bits. This enables accurate garbage collection. 
Besides this, GO provides extendable stack which makes stack 
overflow almost impossible. With such strict memory 
management, GO language is promising in the safety 
perspective. GO language inherits performance designs from C 
language, such as static type, simple structure layout, etc. Thus 
it is possible to achieve similar performance as C. As a practical 
language, it has various features for ease of use, such as 
interface, closure, go statement for concurrent execution and 
channel type for synchronization. Considering the better safety, 
GO language could be a good alternative of C++ in NDK. 
  Finally in the runtime engine implementation, the new model 
unifies the intermediate representation for both Java and C++ 
(or GO) code, and no longer packages binary in APK. Then one 
runtime engine is enough to compile all the application code. 
The compilation infrastructure can be flexible to support 
adaptive compilation, user-specified compilation, ahead-of-time 
compilation etc. 

 

9. Conclusion 

In this work, we investigate the programming models in Google 
Android, i.e., SDK with Java, NDK with C++ and Renderscript 
with C99. To deliver the best user experience to the end users, it 
is important for the system software designers to understand 
these implications and relations. We develop variants of the 
same representative Android application Balls in all of the three 
models. Based on the same application, we conduct detailed 
apple-to-apple analysis of the models. We find that, each of the 
three models its respective advantages and disadvantages. There 
is not a single model can satisfy all the requirements from 
mobile applications for programmability, portability, and 
performance. We propose a unified programming model that 
helps to remove the critical issues in current models by 
combining of the existing models.  
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