
Comparison and Analysis of the Three Programming
Models in Google Android

Xi Qian

Intel Corporation

xi.qian@intel.com

 Guangyu Zhu

Intel Corporation

greg.zhu@intel.com

Xiao-Feng Li

Intel Corporation

xiao-feng.li@intel.com

Abstract

Smartphone and tablet are becoming more like personal
computer. It is important to understand the pros and cons of
different programming models in these kinds of mobile devices.
In order to fully understand their implications to the platform
architecture and their technical correlation, we develop variants
of the same representative Android application in all of the three
sets of APIs provided in Google Android, i.e., the Java SDK,
C++ NDK, and the new powerful Renderscript. Based on the
same application, we conduct detailed apple-to-apple analysis,
with focus on hands-on programming convenience, runtime
behavior, and technical correlation of the different programming
models. We find that the current programming models provided
in Android can be improved. We propose a unified solution that
we expect to satisfy the requirement of both programmability
and performance as a programming model, and also maintain
the applications’ security and portability when deployed in
mobile devices.

Keywords Programming language, programming model,
mobile platform, managed runtime

1. Introduction

Smartphone and tablet are becoming more like personal
computer. They provide abundant and powerful APIs for the
programmers to develop all kinds of attractive applications [1].
For example, Apple iPhone has SDK providing C-class
programming language support [2]. Google provides Android
SDK supporting Java programming API [3].
 Different programming models require different system
implementations to support both the application development in
host machine, and the application execution in client device.
More importantly, different programming models have different
implications in programming convenience, execution efficiency,
and system requirement. To deliver the best user experience to
end users, it is important for the system software designers to
understand these implications.
 To investigate the different programming models, it is
desirable to compare them apple-to-apple with other
non-essential factors fixed. Android provides a good
environment for such a study, since Android has three
programming models in the same system: Java support in SDK
[3], C++ support in NDK [4], and Renderscript support [5]. All
the three programming models can be used to develop
applications of similar functionalities, while the developers
could expect some differences in variants of the same
application developed in different models.
 In order to fully understand the pros and cons of each
programming model, their implications to the platform
architecture, their technical correlation and trend, we develop
variants of the same representative Android application in all of

the three APIs. Then we conduct detailed apple-to-apple
analysis based on the same application. In our analysis, we find
that, each of the three models has its respective advantages and
disadvantages. There is not a single model that can satisfy all
the requirements from mobile applications for programmability,
portability, security and performance.
1. The SDK variant is quite easy to develop, but it gets pretty

low performance compared to its NDK and Renderscript
counterparts, even after careful optimizations in the
application code.

2. The NDK variant can achieve much better performance
than the SDK variant. NDK’s portability across different
microarchitectures is an issue.

3. Renderscript gets the best performance across devices. Its
memory allocation model complicates the programming,
and makes the porting of legacy code difficult.

 The major contributions of this work are the followings:
1. Hands-on comparison of the programming convenience

and characteristics of the three Android programming
models;

2. Deep analysis in the runtime behavior of the same
applications in different programming models;

3. Investigation in the pros and cons of the different models,
and their correlations. Based on the study, we propose a
unified model.

 The rest of the text is organized as follows. We discuss related
work in section 2. Then we introduce our experiment setup in
the study in section 3. We compare the Android programming
models in various aspects in section 4 through section 7,
including the differences in working flow, execution model,
performance, development and deployment. Based on the
investigation, we propose a unified programming model in
section 8. We summarize our work in section 9.

2. Related Work

The number of applications available to a platform has been an
important indicator for mobile systems since Apple launched
their App Store. Platform vendors always try to attract
developers to their platforms. There are many factors that can
impact a developer’s choice, such as the market share, platform
stability, development cost, etc. According to D. Gavalas and
D. Economou [1], the programming model of a platform
significantly impacts the application quality and development
cost.
 Different programming languages require different effort to
develop same application. Prechelt [6] studies 80
implementations of a phonecode program in seven languages.
The result shows that designing and writing the program in
script languages usually takes no more than half as much time
as writing in C, C++ and Java. Besides the language diffrence,
API support difference also impacts programming effort. For
example, Gavalas and Economou [1] find that Android
applications are easier to develop than Java ME, though both

use Java language, due to Android API’s improved compatibility
with the Java SE API. Familarity to a language definitely
impacts a developer’s choice as well. According to TIOBE
Programming Community Index [7], Java and C stay at the top
two positions for quite a period. C#, C++ and Object-C take the
following three positions.
 Given the limited resource of mobile systems, different
programming models have implications on different
performance and power efficiency. Some research [8] on
desktop and server environment claims that the performance gap
between Java and other native languages such as C and
FORTRAN is very small, while some other research suggests
different result. At least for specific domain [9], it is believed to
have significant performance difference between Java and
C/C++. More recent study on Android platform [10] shows that
applications written in C/C++ do achieve better performance
than those in java. Further study shows that the NDK
application performance can be further improved by optimizing
the JNI mechanism [11].

3. Experiment setup

In order to compare the three programming models, we choose
to develop representative applications in all the models, and run
them in actual Android devices. Throughout the process, we get
hands-on experience in application development, operation and
execution.
 The application we present in this investigation is Balls [5].
The application behaves like a real Android game. It gets input
from sensors (orientation and touch), conducts physics
computations and draws resulted graphs on the screen. Balls
simulate the movement of several hundred of bodies according
to the gravity to the ground and repulsion among them. It is like
the well-known scientific problem N-Body. The bodies in Balls
have initial states when the application is launched and then
move around autonomously. Finger can touch a body to force it
move straightly thus disturb other bodies’ movement through
the repulsion. Figure 1 shows a screen snapshot of Balls
application in execution.

Figure 1. A screen snapshot of Balls application in execution

 As common Android games, there are two main logical
components in Balls. One is the computes part, which conduct
the physics computation based on the movement of the bodies;
the other is the graphics part, which draws the bodies on the
screen.
 The major differences in the programming models can be
investigated according to how the two logical components –
computes and graphics - are processed. Next we go through the
differences one by one in details.

4. Working Flow Comparison

4.1 Android SDK working flow

When Google first released Android in year 2007, it provided
only one programming model with Android SDK. It uses Java

as the application programming language. Java has its natural
advantages. First, it has the largest developer community than
any other languages [7]. Second, Java is portable across
different platforms as long as its runtime engine is available.
Third, with its proven type-safety and verification mechanism,
Java has language-level security, which is important for mobile
devices that are mostly private.
 The source code developed in Android SDK is compiled to
bytecode on host machine and packaged into an application.
Users can download the application from Google Android
Market and then install into Android devices. When the
application is launched, Android execution engine DalvikVM
can interpret the bytecode or use a JIT-compiler to compile the
bytecode into machine instructions and then execute them. The
process is shown in Figure 2.

Figure 2. Android SDK working flow

 Android SDK programming model is very much like the
traditional J2SE programming model, except that Android SDK
does not provide J2SE-compatible API but provides complete
framework APIs for applications to work with the mobile
system. The "Write once, run anywhere" feature of Java is also
valid for Android SDK that the programs developed in it can
theoretically run across different Android devices.

4.2 Android NDK working flow

Android NDK was first provided in June 2009 for developers to
build library in C/C++. NDK provides a few advantages over
SDK. First, Android SDK did not have OpenGL ES2.0 support
in the early releases, which is critical for graphic performance.
Second, developers have already accumulated lots of code in
C-class languages, including those for Apple iPhone. It is
unlikely for them to rewrite all their code in Android SDK.
Android NDK allows developers to easily port the legacy code
to Android devices. Third, in certain segments like mathematics
computation, Java-programmed application still has gap to their
C/C++ counterpart.
 Android NDK does not provide complete programming API
for Android application. Code developed in Android NDK is
compiled to target machine code and packaged into apk. It has
to be used with Java code explicitly or implicitly in order to run
in Android device. When the application runs on mobile devices,
the native code is loaded and executed through JNI (Java native
interface). NDK working flow is shown in Figure 3.

Figure 3. Android NDK working flow

 The first release of Android NDK provides rather limited API.

c/c++
source

.java
source

GCC

.so file

javac

.class file

host

Dalvik

system lib

JNI

device

app bytecode SDK API

native lib

JNI

system lib

host

.java source

javac

.class file

Dalvik

SDK API

device

app bytecode

Starting from revision 5, it supports more framework APIs to
access resources. It is even possible to have native-only Android
application without explicitly writing Java code, though that
seriously limits the available functionalities to the application
compared to that written in SDK, because most of the Android
features are provided through SDK API such as services and
content providers, etc. Using JNI can be a solution to access the
SDK API from native code, but that just calls for unnecessary
troubles.
 To make a NDK application run across devices of different
CPU architectures, the developer has to build different versions
of the native library for the targeted ABIs (application binary
interface). The developer can choose to package all the
compiled versions into one application, which is called “fat
binary”. When installed into a device, only one version of the
native library in the fat binary is used.

4.3 Android Renderscript working flow

Renderscript is a new programming model introduced since
Android 3.0. It tries to solve the performance problem of SDK
with Java and the portability problem of NDK with C/C++.
 Renderscript chooses C99 as the base programming language,
and introduces certain additional programming guidelines. The
key idea is to compile Renderscript program into an
intermediate representation that is close to the target architecture.
Application is packaged and distributed with the intermediate
representation, and the runtime engine in the device compiles
the intermediate representation into machine instructions. In this
way, the developer can use the flexibility in the C-like language
for data manipulation, and the developed application is portable
across Android devices. In other words, the position of
Renderscript in Android is much like Android NDK, while its
runtime philosophy is similar to Android SDK. As common
Android NDK applications, Renderscript applications cannot
run alone without Android SDK code.
 The source code of Renderscript is compiled by C99 frontend
compiler Slang into two targets: LLVM bitcode as the
intermediate representation of the program, and reflection Java
classes as the glue layer between the Android SDK Java code
and the Renderscript code. The reflection Java code is used by
the SDK code to invoke Renderscript function, manage
Renderscript memory allocation and write Renderscript
variables.

Figure 4. Android Renderscript working flow

 On the first execution of Renderscript application in the
device, the LLVM bitcode backend compiler libbcc compiles
the bitcode into machine instructions and caches them. Later
executions reuse the cached version unless the application is
modified, thus trigger another compilation. Android
Renderscript working flow is illustrated in Figure 4.
 Renderscript provides API for computes and graphics. The
computes part is a subset of C99 while it adds vector type so as

to facilitate the array or matrix computations. The graphics part
is roughly a wrapper of OpenGL ES2.0.

5. Execution Model Comparison

5.1 Renderscript Execution model

With Renderscript programming model, an application can
basically be partitioned into two levels: the higher level
SDK-developed code, and the lower level
Renderscript-developed code.
 The SDK-developed higher level code takes care of
supporting functions to the application such as resource
management, activity life-cycle and windowing system. It
provides the RSSurfaceView as the drawing context to the
application to draw upon.
 The low level Renderscript code implements the major
features of the application, including both the computes part and
the graphics part. They are triggered or invoked by the higher
level Java code through JNI with the reflection Java classes and
libRS native engine staying aside of the JNI border. The entire
rendering process is managed by a system built-in RS Proc
thread so as not to block the main activity’s response to the
device user. When the renderer finishes the physics computation,
it invokes the graphics part to draw the bodies on the
RSSurfaceView context through OpenGL ES.
 Renderscript provides rsForEach() API so that the render can
distribute the physics computation to multiple helper threads.
Figure 5 shows the execution model of Renderscript.

Figure 5. Android Renderscript execution model

5.2 NDK execution model

Balls implementation in NDK is very similar to that of
Renderscript. It also has two levels: The higher level
SDK-developed code, and the lower level NDK-developed
code.
 Same as Renderscript execution model, the SDK-developed
higher level code in NDK also takes care of supporting
functions to the application such as resource management,
activity life-cycle and windowing system. It provides the
GLSurfaceView as the drawing context to the application to
draw upon.
 The lower-level NDK-developed code is no different from
other native applications: It almost controls everything it wants,
as long as that is supported by NDK API. Android NDK
provides a libc-like library bionic and a pthread implementation.
NDK has access to OpenGL ES for graphics. In this way, it is
easy for the lower level NDK code to implement both the
computes part and the graphics part.
 The major differences between NDK and Renderscript are
two things. First, NDK model is much cleaner than the
Renderscript model, just as a traditional Java application plus its
native library. There is no special glue layer between Java and
native code. The native code has its full control of memory
allocations based on JNI or malloc. It does not depend on other
code to manage its memory allocations. Second, with NDK
model, the application higher level code creates a

JNI

RS SDK API

Renderer

libRS API RS Proc thread

Activity

OpenGL

Physics
computation

Java

Renderscript

c/c++
source

.java source

Slang

.so file

javac

.class file

host

Dalvik

system lib

JNI

device

App bytecode SDK API

native lib

reflection

libbcc

.class file

javac

libRS

RS objects

GLSurfaceView as the graphic context. GLSurfaceView has its
built-in asynchronous threading mechanism, so NDK model
does not require the native code to have a separate thread (i.e.,
RS Proc thread in Renderscript) to manage the rendering
process.

Figure 6. Android NDK execution model

 In order to use native renderer implementation, the renderer
class in Java code is only a simple wrapper of the native
renderer. The native renderer conducts the physics computation
and draws balls on screen for each frame. The execution model
of Android NDK is shown in Figure 6.
 In actual coding for Balls, we implement two NDK versions.
The single-thread version conducts physics computation on the
same thread as the native renderer. And the multi-thread version
implements a thread pool with pthread API and dynamically
distributes the physics computation to the threads in the pool.

5.3 SDK execution model

We implement the SDK version by moving all the native part in
NDK code to Java. We still use GLSurfaceView for the graphics
context since that is the class for OpenGL graphics. The Java
Renderer now is no longer a wrapper, but the real entity
performing the physics computation. Since Android SDK
provides full OpenGL ES2.0 support, we only need to invoke
the SDK API to access OpenGL support for graphics. The
Android SDK execution model is shown in Figure 7.
 As in the NDK version, GLSurfaceView already has built-in
support for a separate thread to execute the entire rendering
process, so as to avoid blocking the main activity thread’s
response to the device user. When the computation tasks are too
heavy and inherently parallel, it is desirable to execute them in
multiple threads, instead of using the same GLSurfaceView
thread. So we have two SDK versions of Balls. The
single-thread version performs the physics computation in the
context of the renderer. The multi-thread version computes the
physics in multiple threads by using Android built-in thread
pool executor class. The renderer distributes the computes tasks
to the pool dynamically.

Figure 7. Android SDK execution model

6. Performance Difference and Analysis

6.1 Performance metric

We evaluate the three variants of Balls on an Android tablet with
Honeycomb 3.2 OS. We mainly measure the FPS (frames per
second) value of the application as the major performance
metric. We choose FPS as the major metric because Android is
mainly used for user interactions. The user experience of
Android is largely decided by the smoothness and
responsiveness of the graphic user interface that is visible to end
user. For Balls, FPS is the best metric to reflect user experience.
 The maximal FPS that is achievable in a platform is decided
by the platform. Common nowadays devices set their maximal
platform FPS around 60, because that is believed to be perfect
for common people’s visual cognitive ability, i.e., higher value
may not be perceived by more smooth by common people,
hence not worth the hardware investment.
 The device in our experiment sets 60 as the maximal FPS
value. That means, the device has 1/60 second (16.7ms) time for
the computation of one frame. When the computation for one
frame is faster than 16.7ms, the device still gives 60 FPS since
that is the maximal. When the computation for one frame is
longer than 16.7ms, say T, the device gives FPS value of 1/T.
 As we describe earlier, Balls has mainly two logical
components. One is computes and the other is graphics.
 The computation amount in Balls’ computes part is mainly
decided by the number of bodies, which is close to a linear
relation. We can increase or decrease the computation amount
by simply adding or reducing the number of bodies in the
application. The tablet we use has dual-core CPU processor
hence dual-core parallelism support.
 The computation amount in Balls’ graphics part is mainly
with OpenGL drawing. The tablet in our experiment has GPU
(graphic processing unit) hardware that can offload the OpenGL
computations from CPU. GPU and CPU can run in parallel if
the software supports. In current Android design, the screen
display mechanism uses two or more buffers so that the
computation/composition part and the graphics drawing part can
be executed in parallel to certain extent. In this way, the major
computation of the graphics part is not on the critical path of
CPU computation. The remaining computation part of the
graphics part on CPU mainly consists of OpenGL API access
and the driver invocation. Similar to the computes part, the
graphics part is also related to the number of bodies, since the
numbers of bodies decide the number of vertexes. At the same
time, larger number of bodies incurs higher consumption of
memory bandwidth.

6.2 Initial performance

Figure 8 shows the initial performance of Balls in three
programming models. The initial version does not explicitly
develop multiple worker threads or include any design
optimizations, so the SDK and NDK versions are single
threaded, while the RS version has built-in RsForEach primitive
that provides implicit multiple worker threads. We can see that
all of them can get the maximal FPS value 60 with a certain
number of bodies. For description simplicity, we use term
“saturation point” refers to the maximal number of bodies when
the application can sustain 60 FPS. This is an important data to
understand the trend of the behavior. The saturation points for
the initial SDK, NDK and RS (Renderscript) versions are 50,
500 and 700 bodies respectively. The SDK version drops its
performance drastically with more bodies, while the NDK and
RS versions have almost linear performance degradation with
more bodies.

Activity

JNI

OpenGL

GLSurfaceView

Renderer Physics
computation

Java

hos

t
Native

Activity

JNI

GLSurfaceView

Renderer

Renderer
Physics

computation

OpenGL

Java

Native

Figure 8. Performance of Balls with initial version.

 The major difference between NDK and RS is due to the
threading model. NDK is single-threaded, while RS is implicitly
multi-threaded. Next we have a look at the major difference
between SDK and NDK, when both are single-threaded.

6.3 Impact of garbage collection (GC)

To find out the root cause of the low performance of the SDK
version Balls, we collect the time ratio spent in Dalvik
execution engine. We partition the time into two categories. One
is for physics computation; the other is for runtime garbage
collection. As shown in Figure 9, we find almost half of the
Dalvik time is spent in GC.

Figure 9. Time partitioning in the initial SDK version of Balls.

 We find the root cause of heavy garbage collections is the
common Java programming convention, where an arithmetic
operation usually creates a new object and return it as the
operation result, as shown in the code snippet below for the add
operation of type Float2. Float2 holds two float variables x, y.

 public Float2 add (Float2 b) {

 return new Float2 (x + b.x, y + b.y);

}

 To reduce the GC time, we change the Float2 add operation
into an accumulation instead of creating new an object, as
shown below.

 public void add_by (Float2 b) {

 x = x + b.x;

 y = y + b.y;

}

 With this change, the GC overhead is significantly reduced
and the FPS value of Balls is improved. Actually, we effectively
eliminate any collection occurrence throughout Balls
measurement. As shown in Figure 10, with same number of
bodies (same X-axis value), the FPS value is improved a lot. For
example, with 300 bodies, the original version has only FPS

value 2, while the optimized version has FPS 60. The saturation
point is changed from 50 to 300 bodies. This means that, within
1/60 second time, the original version can only compute 50
bodies, while the optimized version can process 300 bodies. The
degradation of the optimized SDK version is also much flatter
than before. In following text, when we refer to SDK version,
we mean the one with the optimization.

Figure 10. Performance improvement after object optimization for GC.

6.4 Impact of multiple worker threads

We also develop the multiple worker threads variants for SDK
and NDK versions. For SDK version, we use the Java thread
pool executor class. For NDK version, we use the pthread API
in bionic library. Figure 11 shows how the performance is
changed with multiple worker threads (MT).
 With multiple worker threads, both SDK and NDK versions
have obvious performance improvement. The SDK MT version
pushes the saturation point from the original 300 to current 400
bodies. The NDK MT version pushes from 500 to 700 bodies.
 This experiment means two things:
1. The multiple worker threads can effectively improve

Android application’s performance with the dual-core
hardware support.

2. The application’s performance can be improved by either
reducing the computation amount of one body, or
improving the throughput of the system while keeping the
computation amount unchanged.

Figure 11. Performance improvement with multiple worker threads

 Note, Android system is inherently designed with
multiple-process and multiple-thread support. An application
without multiple worker thread still could benefit from
dual-core hardware, but that is out of the scope of this work.

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000

FP
S

Number of bodies

Balls - initial version

SDK NDK RS

0%

10%

20%

30%

40%

50%

60%

70%

50 100 200 300

Ti
m

e
ra

ti
o

s

Number of bodies

Execution time ratios in Dalvik

garbage collection physics computation

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000

FP
S

Number of bodies

Before/after object optimization

SDK SDK-opt

0

10

20

30

40

50

60

70

200 300 400 500 600 700 800 900 1000

FP
S

Number of bodies

With/without multiple worker threads

SDK SDK-MT NDK NDK-MT

6.5 Runtime design differences

Figure 12 shows the best achieved performance with the three
programming models. We find that the NDK and RS versions
are quite close in performance, while the SDK version lags far
behind. The major differences are as follows. Next subsection
has more data discussions.
1. The SDK version uses Java classes for mathematics,

depending on runtime engine for data layout and memory
management. NDK and RS versions use C-class language
that has direct data layout and manipulation.

2. The SDK version uses just-in-time compiler to generate
machine instructions at runtime. NDK version uses offline
compiler in the host development machine to prebuild the
binary. RS version uses first-execution-time compilation
to generate the machine instructions, and the binary is
cached for later invocations.

3. The SDK version passes the data back and forth between
the physics computation and OpenGL drawing across JNI
interface. NDK and RS versions keep the data mainly
within the native layer.

 These design differences lead to the performance differences
between the SDK version and the other two versions. From
runtime design point of view, all of them implement the drawing
on GLSurfaceView. SDK mainly does that in Java code, while
the other two versions do in native code. This conclusion sounds
confusing because RS version is not native code. But from
performance point of view, RS version is not far from native
code in terms of data manipulation and OpenGL access.

Figure 12. Best Balls’ performance with the three models

 The major runtime difference between RS and NDK is that,
RS is not direct binary code in the device. This difference is not
significant enough to be visible in Balls’ performance. This as a
side fact proves that the advanced compiler optimizations are
not always critical for mobile applications.

Figure 13. Performance comparison between faster interpreter and JIT
compiler

 Although the performance difference between RS and NDK
is minimal, we still can see that in the figure. The reason for RS
has a very subtle advantage is that, RS has built-in vector type
support, which makes the large volume of vector processing fast.
It is actually easy for NDK to implements vector class.
 Although our data shows that advanced compiler
optimizations may not be critical for mobile applications, we
want to understand if that is true between compiler and
interpreter. Dalvik has a fast interpreter that is written in
assembly code for target architecture. We compare the
performance between the fast interpreter and the JIT compiler in
Figure 13. For every configuration, the compiler run always gets
better performance than the interpreter run, though the gap
becomes smaller with more bodies.

6.6 Computation intensity

To really understand the runtime behavior of Balls under
different programming models, we measure the time spent by
each version in drawing one frame and the CPU utilization
ratios, shown in Table 5 - Table 4. This reflects the computation
intensity on the dual-core CPU, which also gives us an
impression about the room of further optimization.
 The frame time in a configuration is the reciprocal of the FPS
value achieved by that configuration. For example, when the
configuration achieves 60FPS, the frame time is 16.7ms. We
partition the time of one frame into computation part and the
rest. We only show the computation part in tables below since
the rest time can be simply deducted.
 CPU utilization refers to how much time the CPU is actively
working. If the CPU utilization is 50%, it means only half of the
processor resource is used. In other words, half of the processor
resource is not used, or idle. If it is a dual-core processor,
possibly there is one core unused.
 Since the device display system only refreshes the screen at a
maximal 60 FPS frequency, that means, if the processor can
finish a frame’s computation within 1/60 second (16.7ms), the
application can achieve the maximal FPS. There are two cases
regarding the frame computation time.
 In case one, if the application’s frame computation time T is
less than 16.7ms, the application can get 60 FPS, but no more,
because 60 FPS is the platform maximal. Then within each
frame, there is a period of (16.7 – T) when the processor does
not contribute or is idle. The shorter T is, the longer the idle
time is, and the smaller the CPU utilization is. In this situation,
although the FPS is no longer increased, the device power is less
due to the longer CPU idle time.

 Table 1. Computation intensity of SDK-ST Balls

SDK-ST version of Balls

Number of Balls 300 400 500 600 700 800 900

FPS value 60 43 27 18 11 8 7

CPU utilization 37% 48% 49% 49% 49% 49% 49%

Frame-time (ms) 16.7 23.2 37.5 55.4 89.4 121.2 140.5

Computation (ms) 12.4 22.2 36.2 54.0 87.4 118.9 138.0

Table 2. Computation intensity of SDK-MT Balls

SDK-MT version of Balls

Number of Balls 300 400 500 600 700 800 900

FPS value 60 60 48 29 21 17 14

CPU utilization 46% 77% 88% 90% 90% 92% 92%

Frame-time (ms) 16.7 16.7 20.7 34.1 48.4 58.8 74.0

Computation (ms) 8.2 12.3 19.5 32.7 46.8 56.9 71.9

0

10

20

30

40

50

60

70

200 300 400 500 600 700 800 900 1000

FP
S

Number of bodies

Best achieved performance

SDK-MT NDK-MT RS

0

10

20

30

40

50

60

70

200 400 600 800 1000

FP
S

Number of bodies

SDK-MT Performance

JIT compiler Fast Interpreter

Table 3. Computation intensity of NDK-ST Balls

NDK-ST version of Balls

Number of Balls 300 400 500 600 700 800 900

FPS value 60 60 60 46 34 26 20

CPU utilization 25% 33% 45% 49% 49% 49% 49%

Frame-time(ms) 16.6 16.7 16.6 21.6 29.5 38.1 49.3

Computation(ms) 8.6 11.0 15.2 21.3 29.3 37.9 49.2

Table 4. Computation intensity of NDK-MT Balls

NDK-MT version of Balls

Number of Balls 300 400 500 600 700 800 900

FPS value 60 60 60 60 60 50 39

CPU utilization 34% 43% 53% 70% 86% 92% 92%

Frame-time(ms) 16.7 16.6 16.6 16.6 16.7 20.2 25.6

Computation(ms) 6.0 8.0 9.7 11.2 15.7 20.0 25.4

Table 5. Computation intensity of Renderscript Balls

Renderscript version of Balls

Number of Balls 300 400 500 600 700 800 900

FPS value 60 60 60 60 60 50 40

CPU utilization 34% 44% 54% 68% 88% 94% 96%

Frame-time(ms) 16.7 16.7 16.7 16.7 16.7 20.1 24.8

Computation(ms) 6.6 7.4 9.0 12.2 15.7 19.8 24.3

 In case two, if the application’s frame computation time T is
more than 16.7ms, the application cannot get the perfect
maximal FPS value, but gets 1/T FPS. In this situation, the
application computes slower than the display refresh rate. It has
to keep busy in frame computation. In a single-core processor,
the CPU utilization should be close to 100%. Otherwise, if the
CPU utilization is obviously lower than 100%, there must be
thread synchronization or I/O blocking optimizations. In case of
dual-core processor, to achieve 100% CPU utilization needs to
have no less than two parallel working threads. If there is only
one active working thread, the maximal CPU utilization it can
achieve in a dual-core platform is 50%.
 In tables, the column for the saturation point of each version
is shown in dark color. We can see in NDK-ST and SDK-ST
versions that, the CPU utilization ratios are always lower than
50%. After the saturation points, the ratios become 48%-49%.
This clearly indicates the single worker thread nature of the two
versions. With NDK-MT and SDK-MT versions, the CPU
utilization ratios beyond the saturation points are in the range of
88%-92%. As a contrast, the RS version has CPU utilization
ratio in range of 94%-98% after the saturation point. That means,
the parallelism we exploit with the thread pool in Java and
pthread is not as sufficient as the RS built-in support.
 We also observe that the computation time beyond the
saturation points. The computation time in all the versions is
almost the same as the frame time. That means, as long as the
CPU is working, it is working in the frame computation. It does
not waste CPU resource in other thing. If we compare the
computation time between the single-thread and multithread
version pairs, we can find that, SDK-MT’s computation time is
about half of SDK-ST’s, and NDK-MT’s computation is also
about half of NDK-ST’s. This is not surprising, because the
physics computation is quite parallel in nature. It also indicates
that the thread pool implementations in SDK and NDK versions
have good scalability.

7. Differences in Development and Deployment

Above we analyze the differences in the three programming
models from a system designer’s point of view. In this section,
we have a comparison from an application developer’s point of
view.
 Firstly, we summarize the programming API differences we
experience with Balls development in Table 6. We classify the
API differences into five categories: user interaction and
resource management; graphics (i.e., OpenGL support);
computes (i.e., vector support); worker threads pool; and library
extensibility.
 From the table, we can see that the major drawback of SDK
development is the lack of vector type support. We have to use
Java class to simulate. Except that, all the rest API support with
SDK is complete and convenient. The vector support is actually
not only an API issue, but also a performance issue, as our data
show in early section.

Table 6. Programming API differences

User interaction and

Resource management
Graphics
(OpenGL)

Computes
(Vectors)

Worker thread
pool

Library
extensibility

SDK Full support Full support No Full support Java support

NDK No Full support Can support Can support C++ support

RS No Most support Built-in Built-in No

 NDK and RS do not have support for user interaction and
resource management. They have to work with Java code to
have those functionalities. NDK and RS can get similar
performance in our experiment, while NDK needs extra
development efforts, because it does not have built-in vector
type and worker thread supports.
 Next we compare the memory management API in the three
programming models in Table 7. We classify the API differences
into three categories: memory allocation; memory release; and
data sync between GPU and CPU.

Table 7. Memory management API differences

 Memory
Allocation

Memory
Release

Data sync between
CPU and GPU

SDK Automatic Automatic Manual

NDK Manual Manual Manual

RS Manual in Java layer Automatic RS Sync API

 With NDK, one has to do everything manually with the full
control of memory. This is tedious and error-prone as proved by
tons of literatures. SDK has garbage collection support so the
allocation and release is done automatically. Neither NDK nor
SDK has the data synchronization support between CPU and
GPU, which has to be done manually.
 RS is quite different in its memory management API. It has
the design philosophy that RS application could run on
heterogeneous architecture. For example, the same RS code can
be compiled to run on CPU or GPU based on its runtime
strategy. So RS API is designed with heterogeneity support in
mind. This is not the case for SDK (Java) and NDK (C++). RS
design philosophy is reflected in its memory management API.
First, RS provides API for data synchronization between CPU
and GPU. Second, RS does not give the freedom of memory
allocation in RS native code because that would bind the
memory to CPU or GPU statically. RS only allows memory
allocation in Java layer, which is independent of the underlying
architecture. Third, to correspond to the Java layer memory
allocation, RS provides automatic memory release with
reference counting. Given the fact that the memory allocation
and assignment requests are both raised in the main thread as an
asynchronous command to RS rendering thread, it is difficult for
developer to change allocation during physics computation.
 In application deployment stage after it is developed, the
installation package size is important for user experience. The

default NDK development tool chain builds native binary for
every supported ABI target and package all of them into the
final application. That increases the size of application package
APK (Android application package). At the same time, Java
bytecode is usually much more succinct than the generated
machine instructions. As a result, the size of NDK Balls is 2.4 -
2.7 times of that of SDK and RS Balls, as shown in
Table 8. As a workaround for portability, “fat-binary” is not
really desirable.

Table 8. APK size of different versions of Balls

 SDK NDK RS

Package size(KB) 25 60 22

8. Unified Programming Model

Based on the comparison and analysis above, we see that each
of the three models SDK, NDK and Renderscript has its
respective advantages and disadvantages. There are a few
common pursuits in all the Android programming models.

A. The model should be easy to use for developers.

 This goal includes two aspects: the language and the APIs. In
language aspect, Java in SDK, C++ in NDK, and C99 in RS are
all familiar to the developer community after years of evolution.
In API aspect, people expect automatic memory management
and library extensibility. Extensibility is important to port
current physics engines to Android. Only SDK can satisfy both.

B. The model should provide device-portable solution.

 SDK is portable by nature with Java language and runtime
support. NDK is not portable by nature with precompiled binary
unless fat-binary is provided as a work-around. RS compiles the
C99 code into LLVM bitcode, which makes it portable in
Android devices that have RS runtime support.

C. Applications developed in the model should have
reasonable security warranty.
 Security is always critical for software. It is even more
critical for software in mobile devices, because they usually
carry the users’ sensitive information. Java with its strong typing
and verification mechanism provides high level of security at
language level. C++ does not have similar concepts. RS does
have security advantage over C++ with its strict memory
management. But RS does not put strong restrictions on pointer
usage. For example, programmer can simply assign a random
number to a pointer without encountering build-time failure. On
the other hand, at system level, Android smartly leverages the
underlying Linux’s support in process isolation and user access
control, which effectively prevents a problematic application
from making system-wide destructive impact. But that cannot
solve all the potential issues that a casual user could meet, if the
user is not cautious enough in granting privilege permissions.

D. Applications should have reasonable performance for both
computes and graphics.
 Performance requirement for computes need vector type
support and worker thread pool. Only RS has both. Performance
requirement for graphics need OpenGL ES. RS does not have
full support while SDK and NDK have. It is also important to
avoid lots of data movement back and forth across JNI or
between CPU and GPU. Since graphic data has to finally stay in
OpenGL domain in native layer, it is desirable to have a solution
to either keep the data in native layer or avoid the data copying
across JNI. Current SDK does not provide the solution.
 The issues in different models are summarized in Table 9.
 We argue that, some of the issues can be resolved easily or
not so easily, while some other issues can be really difficult to
resolve. The graphic data management issue with SDK is hard
to be eliminated without changing the JNI implementation.

Library extensibility in RS is not going to be as convenient as
Java and C++.

 Table 9. Issues in current Android programming models

 Programmability portability Security Performance

SDK no issue no issue strong vector processing,
data management

NDK memory management fat binary weak vector processing,
thread pool

RS memory allocation,
library extensibility no issue weak full OpenGL support

 In this regard, we propose a new programming model that
helps to remove the critical issues in current models by
combining of the existing models. It introduces vector type in
Java layer, and defines runtime to eliminate the data copying
across JNI as RS does. The new model compiles NDK C++
code into intermediate representation as RS does. It also
introduces vector type and implements worker thread pool API
in NDK. In this way, developers do not need to write separate
C99 code with RS API but keep the benefits of RS.
 The challenge in the new model is mainly with security. To
keep the C++ language means to keep its security risk as well.
The risk can be largely reduced by limiting the usage of pointer,
in both data access and function access. Also the API should be
limited to secure ones especially for those memory related
operation such as string manipulation functions.
 The limited C++ is very similar to subset of GO language
[12]. GO language keeps pointer for performance while
removes pointer arithmetic. It distinguishes pointer from normal
integer with tag bits. This enables accurate garbage collection.
Besides this, GO provides extendable stack which makes stack
overflow almost impossible. With such strict memory
management, GO language is promising in the safety
perspective. GO language inherits performance designs from C
language, such as static type, simple structure layout, etc. Thus
it is possible to achieve similar performance as C. As a practical
language, it has various features for ease of use, such as
interface, closure, go statement for concurrent execution and
channel type for synchronization. Considering the better safety,
GO language could be a good alternative of C++ in NDK.
 Finally in the runtime engine implementation, the new model
unifies the intermediate representation for both Java and C++
(or GO) code, and no longer packages binary in APK. Then one
runtime engine is enough to compile all the application code.
The compilation infrastructure can be flexible to support
adaptive compilation, user-specified compilation, ahead-of-time
compilation etc.

9. Conclusion

In this work, we investigate the programming models in Google
Android, i.e., SDK with Java, NDK with C++ and Renderscript
with C99. To deliver the best user experience to the end users, it
is important for the system software designers to understand
these implications and relations. We develop variants of the
same representative Android application Balls in all of the three
models. Based on the same application, we conduct detailed
apple-to-apple analysis of the models. We find that, each of the
three models its respective advantages and disadvantages. There
is not a single model can satisfy all the requirements from
mobile applications for programmability, portability, and
performance. We propose a unified programming model that
helps to remove the critical issues in current models by
combining of the existing models.

Bibliography

[1] D. Gavalas and D. Economou, "Development Platforms for

Mobile Applications: Status and Trends," Software, IEEE, vol.

28, no. 1, pp. 77-86, Jan.-Feb. 2011.

[2] "iOS Dev Center," Apple Inc., [Online]. Available:

https://developer.apple.com/devcenter/ios/index.action.

[Accessed 21 Feburary 2012].

[3] "Android SDK," Google Inc., [Online]. Available:

http://developer.android.com/sdk/index.html. [Accessed 21

Feburary 2012].

[4] "Android NDK," Google Inc., [Online]. Available:

http://developer.android.com/sdk/ndk/index.html. [Accessed 21

Feburary 2012].

[5] T. Bray, "Introducing Renderscript," 09 February 2011 . [Online].

Available:

http://android-developers.blogspot.com/2011/02/introducing-ren

derscript.html. [Accessed 21 Feburary 2012].

[6] L. Prechelt, "An empirical comparison of seven programming

languages," Computer, vol. 33, no. 10, pp. 23-29, Oct 2000.

[7] "TIOBE Programming Community Index for February 2012,"

[Online]. Available: http://www.tiobe.com. [Accessed 10

February 2012].

[8] J. M. Bull, L. A. Smith, L. Pottage and R. Freeman,

"Benchmarking Java against C and Fortran for scientific

applications," in Proceedings of the 2001 joint ACM-ISCOPE

conference on Java Grande, New York, NY, USA, 2001.

[9] M. Fourment and M. R. Gillings, "A Comparison of common

programming languages used in bioinformatics," BMC

bioinformatics, vol. 9, no. 1, pp. 82-91, 2008.

[10] C.-M. Lin, J.-H. Lin, C.-R. Dow and C.-M. Wen, "Benchmark

Dalvik and Native Code for Android System," in Innovations in

Bio-inspired Computing and Applications (IBICA), 2011 Second

International Conference on, Shenzhen, Guangdong, China ,

2011.

[11] Y.-H. Lee, P. Chandrian and B. Li, "Efficient Java Native

Interface for Android Based Mobile Devices," in Trust, Security

and Privacy in Computing and Communications (TrustCom),

2011 IEEE 10th International Conference on, Changsha, Hunan

Province, P. R. China, 2011.

[12] "The Go Programming Language," Google Inc., [Online].

Available: http://golang.org/. [Accessed 1 5 2012].

[13] "The Computer Language Benchmarks Game," [Online].

Available: http://shootout.alioth.debian.org. [Accessed 10

February 2012].

[14] T.-M. Grønli, J. Hansen and G. Ghinea, "Android vs Windows

Mobile vs Java ME: a comparative study of mobile development

environments," in Proceedings of the 3rd International

Conference on PErvasive Technologies Related to Assistive

Environments, Samos, Greece, 2010.

[15] "Renderscript," Google Inc., [Online]. Available:

http://developer.android.com/guide/topics/renderscript/index.htm

l. [Accessed 21 Feburary 2012].

[16] "The Go Programming Language," GOOGLE, [Online].

Available: http://golang.org/. [Accessed 29 4 2012].

