
Behavior Characterization and Performance Study

on Compacting Garbage Collectors with Apache Harmony
Chunrong Lai Ivan T Volosyuk Xiao-Feng Li

Enterprise Solutions Software Division, Software and Solutions Group, Intel Corporation

{chunrong.lai, ivan.t.volosyuk, xiao.feng.li}@intel.com

Abstract:
Compacting garbage collector (GC) has been recognized for its
benefits in allocation efficiency and space utilization. Some
commercial runtime systems are known to have compacting
GC implemented [1][2]. Apache Harmony [3], an open source
Java SE implementation, also has two versions of compacting
GC built in, which were developed based on classical
compaction algorithms. Our experiments with Harmony
compacting collectors showed that the delivered performance is
sensitive to the underlying platforms. A better performing
collector in one platform can perform worse in another. In this
paper, we evaluated Harmony compacting collectors in modern
platforms with standard server benchmark, characterized the
collectors’ behavior in details and studied several design
tradeoffs. Based on the evaluation, we propose several
optimization techniques at different levels. Adaptive partial
heap collection reduces the collection time dramatically
without generational GC support. Memory prefetching
techniques are studied as well. While hardware prefetching
performs well with mark-compaction, pure software
prefetching can reduce the collection time by up to 24%. We
also found that good careful tuning of certain hotspots are more
important than expected.

1. Introduction
Automatic garbage collection is popular in modern
programming languages such as Java or C#. It relieves the
burden of explicit memory management from programmer.
Compared with copying collector, compacting collector does
not reserve additional space for object moving, hence has better
space efficiency. Moreover, it has no fragmentation problem
that exists in mark-sweep collector. Compacting collector has
another believed advantage in object locality by preserving the
object order during collection. Because of the merits,
compacting collectors are implemented in some commercial
runtime systems [1][2]. Apache Harmony [3], an open source
Java SE implementation, has two versions of compacting
collectors built in. We call them GC-MC (mark&compact) and
GC-CC (copy&compact) in this paper. The former is based on
the classical Lisp2 algorithm [4], and the latter follows the
well-known threaded algorithm originated from Jonkers [5] and
Morris [6].
Compacting collector has also its downsides. A notorious issue
is the long collection time. Since the compaction process
moves objects on site, it can not finish in one pass. Besides the
marking pass which identifies the live objects, a typical
compaction algorithm needs additional pass(es) to compute
object moving target and conduct the movement. Each pass
usually means a full heap walking, which is time consuming
and memory unfriendly. The other issue with compacting
collector is its space overhead. Usually a compacting collector
needs auxiliary space for mark-bit table, installing forwarding
pointer (or offset table in recent work), and sometimes
remembering reference slots as well.
Although various compaction algorithms were studied
previously, their design tradeoffs and performance implications
are yet to be understood in modern platforms with server
workload. Recently the published work on compacting
collectors are mainly about the parallelization and scalability,

we think it is still important to understand the behavior and
design tradeoffs in sequential compacting collectors, so as to
provide a good foundation for their parallel version.
To achieve our goal, we evaluated two compacting collectors
thoroughly in two different modern platforms with
SPECJBB2005 benchmark. We compared the two collectors in
details and developed several optimizations. The main
contributions of this paper are:
1. We had apple-to-apple comparisons between two

compacting collectors on real machines, giving detailed
behavior characterizations and performance analyses;

2. We developed an adaptive partial heap collection
mechanism that can reduce the compaction time
dramatically while maximizing the overall GC throughput;

3. We studied memory prefetching techniques, and analyzed
their applicability. Our software prefetching can improve
SPECjbb2005 performance by up to 4.6%;

4. One key lesson we learned is, the actual performance of a
collector is highly dependent on the underlying platform.
A new memory hierarchy design can turn a collection
algorithm from a loser to a winner.

We believe our work has laid a solid foundation for next step
Harmony GC development. The framework also enables
Harmony developers to implement and study other collection
algorithms.
1.1 Apache Harmony GC Framework
Harmony is developed with modularity as one major pursuit.
The GC component in Harmony interacts with the core runtime
through a set of defined interface APIs. Any collector that
implements the interface can be plugged into Harmony as a
dynamically loaded object. At the time when this paper is
written, there are three different garbage collectors
implemented in Harmony, two of which are compacting
collectors and are studied in this paper.
The paper is organized as follows. In Section 2 we briefly
describe the compacting algorithms in Harmony, and then
introduce our experimental platforms. In Section 3, we
characterized the collectors in two platforms, a Unisys ES7000
and an Intel Tulsa system. We discuss adaptive partial heap
collection in Section 4. In Section 5 we discuss the memory
prefetching techniques. More tradeoffs during performance
tuning are described in Section 6. Section 7 is related work
discussion, and we conclude the work in Section 8.

2. The Collectors and Evaluation Platforms
In this section, we introduce the baseline algorithms of the two
Harmony compacting collectors; then we describe our
experimental platforms and evaluation methodology.
2.1 GC-MC compaction algorithm
Harmony has two compacting collectors implemented. They
were developed based on two classical algorithms respectively.
GC-MC is based on the Lisp2 compacting algorithm [4]. The
compaction process consists of four phases:

 Marking phase that traces from the roots set and marks
all the live objects in the heap;

 Repointing phase that computes the new addresses of the
live objects and install a forwarding pointer for each;

 Fixing phase that adjusts all the repointed references to
point to their new locations;

 Moving phase that really moves the live objects to their
new locations.

An explicit mark-stack is used during the marking phase. An
object is marked by marking a bit in the mark-bit table, where
one bit represents a four-byte word in the heap. The live objects
are sliding-compacted to the lower end of the heap. Target
addresses of all live objects are computed and written into the
object headers as the forwarding pointers. In fixing phase, all
the reference fields of live objects are updated to be the
forwarding pointer of the referent object.
2.2 GC-CC compaction algorithm
The compaction algorithm in GC-CC is based on the threaded
algorithm credited to Jonkers [5] and Morris [6]. It is more
elaborate than GC-MC in that, it has only two phases (marking
and moving) and does not need auxiliary data structure for
forwarding pointer. GC-CC builds a reference list for every live
object by reusing the original reference fields in the objects.
The list for a live object links all the fields that contain
references to the object. When an object is moved in moving
phase, all references to it are updated by traversing the list.
References of two directions (pointing from low to high and
from high to low) are treated differently when the list is built.
Those references from high to low are added into the list in the
marking phase, while the opposite direction references are
added when their containing objects are moved.
2.3 Evaluation methodology
Since GC-MC and GC-CC share the same infrastructure in
Harmony, we are able to have apple-to-apple comparisons
between them.
We run Harmony in two different modern platforms. One is a
Unisys ES7000 with eight 3.0GHz Intel Northwood processors
and 400MHz FSB. The other is Intel Tulsa platform with four
3.2GHz Intel Pentium-D dual-core processors and 800MHz
FSB. The Northwood processor each has 8KB L1 data cache,
512KB unified L2 on-chip cache, 4MB L3 unified cache and a
64-entry data TLB. A 32MB L4 cache is shared by 4
Northwood processors. One core of the Pentium-D processor
has 16KB L1 data cache, 1MB unified L2 on-chip cache, 8MB
L3 unified cache shared with another core in same processor
and also a 64-entry data TLB. Tulsa platform is newer and has
more advanced memory hierarchy.
SPECjbb2005 [7] is the workload we use. According to the
reporting rule, a valid run of SPECjbb2005 in our platforms
reports a final score based on the scores achieved from 8
through 16 warehouses. Our experiments showed that 1GB
heap size means about 20% live object residency in the heap
space with 8 warehouses, and about 40% with 16 warehouses.
In this paper, we only show the data with 1GB heap size
because we found different heap size does not seriously change
our conclusions in GC module relative comparisons, although
the absolute values and SPECjbb2005 scores are impacted.
More workloads such as Dacapo [8] and SPECJAppServer [9]
are also under investigation and we hope to report in future.
We use Intel Vtune [10], a performance tool, to uncover the
detailed characteristics of the executions. Its event-based
sampling (EBS) reads the hardware performance counters of
the processor; hence we can get runtime information with
minimum interference with the application execution.

3. Characterizations of GC-MC and GC-CC
In this section we characterize GC-MC and GC-CC in the
Unisys and Tulsa platforms. To avoid the results being skewed
by suboptimal implementations, the characterizations in this
section include the optimizations that we will describe in
following sections.

3.1 Characterizations in Unisys platform
We first give the average collection time breakdown of the
compacting collectors. For GC-MC, the marking phase is
further partitioned into the time for the first-time object
touching (mark first), the time for remembering the re-pointed
reference slots (mark remember) and the rest (mark others).
Both the repointing and moving phases need to traverse the
mark-bit table, so we separate the mark-bit table traversal time
from their belonged phases: The time in repointing phase is
repoint traversal and that in moving phase is move traversal.
For GC-CC, we separate the list-related operation time into
three parts: list building in marking phase (mark list-build), list
updating in moving phase (move list-update), and reference
updating in moving phase (move list-reference). Figure 1 shows
the time breakdown of both collectors’ average collection time
over five runs in the Unisys platform.

We can see from the figure that the four phases of GC-MC
almost evenly partition the collection time, with a surprising
exception that the moving phase takes the least time while
marking takes most. This is surprising because people’s
intuition is the real object movement would be the most time
consuming phase. In the marking phase, the first-time object
touch takes a big portion (17.6%) that is almost equal to the
moving phase time. This gives us an impression on how
intensive the memory operations are in GC-MC. The situation
is even more obvious in GC-CC, where the first-time object
touch takes more than 30% of the total time. These imply good
potentials for memory prefetching, which we will discuss later.

Another interesting observation is that the list-related
operations take more than 40% of GC-CC time. Because list is
a dynamic data structure, it is not straightforward to improve its
operation time. The list building part takes invisible percentage
in the time bar, which means the number of references pointing
from high to low is small. A side note is: This means a
generational collector would match the behavior well.

Table 1. Memory profile on Unisys
 8WH 10WH 12WH 14WH 16WH
GC-MC 0.087 0.087 0.088 0.090 0.090

IPC
GC-CC 0.092 0.095 0.093 0.081 0.079

GC-MC 0.451 0.432 0.443 0.443 0.445Loads
per inst GC-CC 0.361 0.363 0.373 0.374 0.353

GC-MC 8.41% 8.76% 8.31% 10.1% 9.05%L1 miss
ratio GC-CC 5.75% 5.33% 5.61% 6.20% 5.62%

GC-MC 3.62% 3.57% 4.02% 5.08% 3.74%L2 miss
ratio GC-CC 2.54% 2.44% 2.42% 2.52% 2.70%

GC-MC 0.45% 0.48% 0.48% 0.48% 0.48%DTLB
miss
ratio GC-CC 0.59% 0.63% 0.57% 0.68% 0.61%

15.4
%

3.6%

24.0
%

21.1
%

3.4%

12.3
%

2.7%

17.6
% mark(f irst)

mark(remb.)

mark(othr.)

repoint(trav .)

repoint(othr.)

f ix

mov e(trav .)

mov e(othr.)

5.5%
4.5%

21.3
%

21.6
%

13.8
%

33.2
%

0.1%

mark(lis t-build)

mark(f irst)

mark(othr.)

mov e(list-updt)

mov e(list-ref)

mov e(trav .)

mov e(othr.)

Figure 1. Execution time breakdown on Unisys

GC-MC GC-CC

Table 1 shows the memory access profile of the two collectors.
We collected the IPC, number of loads per instruction, L1
cache miss ratio, L2 global cache miss ratio, and DTLB miss
ratio. We can see GC-MC has more memory accesses, more
cache misses but less DTLB misses. IPCs of both collectors are
low in this platform. These might mean that both collectors’

behavior does not match well with the underlying hardware,
and the threaded reference list causes more page walks.
The overall performance comparisons between the two
collectors are shown in Figure 2.
In Figure 2, the number is the lower is better. The average
collection time of GC-MC is higher (~17%) than GC-CC, but
the difference of total accumulated collection time during the
whole application execution is not so big (~7%). That means
GC-MC collections happen less times during a fixed period
because of its longer time. The overall SPECJbb2005 score of
GC-MC is worse than GC-CC because of its higher collection
time. Note we use the reciprocal of the SPEC score for the
comparison so that the proportional relation between GC time
and SPEC score can be clearly demonstrated.
3.2 Characterization in the Tulsa platform
The function profile of both collectors in Tulsa platform is
shown in Figure 3. Compared to Figure 1, the memory
intensive operations take less percentage in Tulsa. For example,
the fixing phase is 5% less in percentage and the first-time
object touch is 10% less. The list manipulation part in GC-CC
is reduced to 35%. This is because of the newer memory
hierarchy design in Tulsa platform. The memory profile next

confirms this assertion.
Table 2 gives the memory profile in Tulsa platform. The IPCs
of both collectors are increased by 4X~5X due to the reduced
cache misses. The double-sized cache of Tulsa core can
effectively reduce the cache miss ratios by 2X~3X. The table
also shows that the cache access improvement in GC-CC is
smaller compared to GC-MC, which is mainly due to the
random memory access pattern of the reference list. We
speculate the threaded algorithm would be less friendly to the
latest progress in modern processor memory hierarchy.
The overall performance comparison in Tulsa is given in Figure
4. Interestingly, we find the curves of the two collectors reverse
their positions compared to Figure 2: GC-MC performs

uniformly better than GC-CC. This is not surprising though,

since the intensive memory operations and their regular access
pattern in GC-MC can benefit more from Tulsa. Figure 4 also
shows proportional relation between total GC time and
achieved SPEC score.

Table 2. Memory profile on Tulsa
 8WH 10WH 12WH 14WH 16WH

GC-MC 0.409 0.408 0.408 0.428 0.398
IPC

GC-CC 0.354 0.349 0.344 0.341 0.338
GC-MC 3.66% 3.80% 3.92% 3.85% 3.99%L1 miss

ratio GC-CC 3.06% 3.23% 3.33% 3.33% 3.18%
GC-MC 1.31% 1.32% 1.40% 1.41% 1.38%L2 miss

ratio GC-CC 0.95% 1.01% 1.11% 1.09% 1.11%
GC-MC 0.85% 0.84% 0.87% 0.88% 0.86%DTLB

miss ratio GC-CC 1.06% 1.09% 1.12% 1.13% 1.10%

4. Adaptive Partial Heap Collection
Because of the known long time of full heap compaction,
incremental compaction was proposed [11][12]. The idea is to
collect part of the heap normally and collect the whole heap
only when necessary. We developed partial heap collection in
both GC-MC and GC-CC. In this section, we first describe an
adaptive mechanism we designed that determines when to
trigger a full collection; then we discuss the application of a
copying collector for partial collection.
4.1 The adaptive partial heap collection idea
We designed the partial heap collection by collecting only the
objects allocated after last collection. This is actually similar to
a generational GC except that we do not employ write barriers
to remember the references from old objects to the newly
allocated ones; instead, those references are discovered by
scanning the heap. In this way the partial heap collection has
the same marking phase as full heap collection. The
computations in other phases will be much reduced. Since other
phases in our collectors takes more than half of the total
collection time in both platforms, we can expect an obvious GC
time reduction.
The downside of partial collection is, since it reclaims only the
newly allocated area, the space for those dead objects in old
area can not be reclaimed. This will trigger more frequent
collections, which are undesirable for overall application
performance. In order to guarantee the effectiveness of partial
collection, we propose an adaptive strategy to guide the
collector to trigger partial or full collection. The goal of the
strategy is to maximize the overall GC throughput, which is
measured as the ratio of total produced free space in all the
collections to the sum of all the collection times, i.e.,

Throughput = ΣSizeofFreeSpace / ΣTimeofCollection (1)
We assume the free space size after a full collection is Smax, and
the threshold free space size for triggering a full collection is
Smin. After each partial collection, size of dS newly allocated
objects can survive. This means for every (Smax – Smin)/dS times
of partial collections, a full collection will be triggered. If each
partial collection takes time Tfast, and a full collection spends

Ratio of GC-MC to GC-CC in Unisy s

0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20

8W 9W 10W 11W 12W 13W 14W 15W 16W

Av erage collection time

Total GC time

SPEC score

Figure 2. Performance comparison in Unisys

Ratio of GC-MC to GC-CC in Tulsa

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

8W 9W 10W 11W 12W 13W 14W 15W 16W

Average collection time
Total GC time
SPEC score

Figure 4. Performance comparison in Tulsa

9.3%

8.8%

18.0
%

15.8
%

7.4%

26.2
%

7.4%
7.2%

m ark(f irs t)

m ark(rem b.)

m ark(othr.)

repoint(trav .)

repoint(othr.)

f ix

m ov e(trav .)

m ov e(othr.)

10.1
%

8.1%

16.7
%

18.3
%

24.1
%

22.4
%

0.2%

mark(list-build)

mark(f irst)

mark(othr.)

mov e(list-updt)

mov e(list-ref)

mov e(trav .)

mov e(othr.)

Figure 3. Execution time breakdown on Tulsa

GC-MC GC-CC

time Tslow, the total time spent for all the collections between
two full collections is:

T = ((Smax – Smin)/dS) * Tfast + Tslow (2)
The total free space size produced during this period is

(computed as a series):
S = (Smax+Smin)*(Smax – Smin + dS)/2*dS (3)

According to (1), the throughput approximation between two
full collections is S/T. Since Smax, Tslow, Tfast and dS can be
measured at runtime, the maximal S/T can be reached with a
certain value of Smin. This Smin value is the threshold to trigger a
full heap collection. When the remaining free space size is less
than Smin, a full collection should be carried out.
We applied this adaptive strategy with GC-MC for its partial
collection, and the average collection time is shown in Figure 5.
The newly produced live data size dS is also shown.

The collection time is normalized to that of 8 warehouses. We
can see that the partial collection time is less than half of the
full collection time. And the partial collection time is roughly
proportional to the newly produced live data size dS.
We measured the performance improvement of GC-MC with
partial collection over full-collection-only GC-MC in both
platforms. The results are shown in Figure 6. As a comparison,
Figure 6 also shows the performance without the adaptive
strategy. Without adaptation, Smin is half of the total heap size.

Figure 6 shows that the adaptive partial collection can improve
the performance by more than 10% in both platforms, and the
adaptive strategy itself contributes more than 2% in average.
An interesting observation is the partial collection can benefit
more with more warehouses in Tulsa platform. As we discussed
above, partial collection can not improve the marking phase,
which becomes more and more dominant when the warehouse
number increases, hence is benefited more.
4.2 Copying collector for partial heap collection
While the full collection uses compaction algorithm, we can
employ a different one for the partial collection. Copying
collector is a good candidate to reduce the partial collection
time. The main reason for choosing copying collector is it has
only one pass, and the condition for reserved copy space can be
met normally. If the reserved space is not enough for copying,
the collector can simply fall back to compaction algorithm. The

copy reserve space can be much smaller than the collected
space. The idea of using copying collection in common case
and falling back to compaction is not new [13]; recently it is
applied for mature space collection in a generational GC [14].
We implemented this design in GC-CC with a depth-first
copying collector, and set the reserved space to be one-fifth of
the from-space. We compared the average collection time of
partial heap compaction and partial heap copying in two
platforms. The results are shown in Figure 7. A copying
collector is indeed faster: Its collection time is about 60% of
partial compaction with 8 warehouses, and about 70% with 16
warehouses. In Tulsa, it saves less, because compaction can
benefit more from its new memory hierarchy design.

We also collected the average collection time of full-heap
GC-CC and partial-heap GC-CC with adaptive copying
collector as shown in Figure 8. The partial copying collection
time is less than one third of a full GC-CC collection.

However, faster partial heap collection does not necessarily
mean overall better performance. In our experiments, GC-CC
with partial copying actually has similar throughput as GC-MC
with partial compaction. A believed disadvantage of copying
collector is that, its object locality can be hurt because it does
not preserve the object order. To verify this traditional wisdom,
we collected the memory profile of mutator threads with both
copying and compacting collectors, as shown in Figure 9.
The data confirm that copying collector causes more DTLB
misses than the compacting collector in both Unisys and Tulsa
platforms. Nevertheless, we find the L1 cache miss rates of
them are very close. This means that object order preservation
is more important to the page-level locality than the cache-level
locality for SPECjbb2005. We think the reason is that the
depth-first copying collector can well keep the cache-level
locality, but can not with the page-level locality. In our
experiments, the DTLB misses can slow down the mutator
execution by up to 4%. The TLB misses can be reduced with
larger hardware page size, while that’s true for both collectors.

5. Memory Prefetching Techniques
As we discussed in previous sections, the intensive memory
operations in the collectors may imply the importance of a
good memory prefetcher. In this section, we discuss the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

8 WH 9 WH 10 WH 11 WH 12 WH 13 WH 14 WH 15 WH 16 WH

Tulsa-fullMC Tulsa-partialMC

Unisys-fullMC Unisys-PartialMC
dS

Figure 5. Normalized collection time and dS

0%

5%

10%

15%

20%

25%

30%

8 WH 9 WH 10 WH 11 WH 12 WH 13 WH 14 WH 15 WH 16 WH

Unisy s non-adaptiv e Unisy s-adaptiv e

Tulsa non-adaptiv e Tulsa adaptiv e

Figure 6. Performance speedups with partial heap

collection with/without adaptive strategy

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

8 WH 9 WH 10 WH 11 WH 12 WH 13 WH 14 WH 15 WH 16 WH

Tulsa
Unisys

Figure 7. Ratio of average partial copying collection

0

0.5

1

1.5

2

2.5

8 WH 9 WH 10 WH 11 WH 12 WH 13 WH 14 WH 15 WH 16 WH

Unisy s-f ullCC Unisy s-partialCC
Tulsa-f ullCC Tulsa-partialCC
dS

Figure 8. Normalized average collection time of
full-heap and partial-heap GC-CC

prefetching techniques used in our compacting collectors. We
address the topic in hardware prefetching and software
prefetching separately.

5.1 Harware prefetching
Tulsa has two hardware prefetchers [15] which can be turned
on/off via BIOS setting. They are adjacent cache line
prefetcher that prefetches the adjacent 64-byte line in a
128bytes sector when a cache line is loaded, and stride
prefetcher that attempts to stay 256 bytes ahead to prefetch the
cache line.
We measured the collection time of different collector
configurations (full heap GC-MC, full heap GC-CC, partial
heap compaction, and partial heap copying) with Tulsa
hardware prefetchers. The speedups are given in Table 3.
Table 3. Speedups with hardware prefethers

Collectors
Prefetchers

Full
GC-MC

Full
GC-CC

Partial
compaction

Partial
copying

Stride 2.00X 1.53X 1.53X 1.88X
Adjacent 1.42X 1.40X 1.61X 1.54X
Both on 2.47X 1.82X 2.12X 2.25X

The speedups are significant for all the collectors, while
different prefetchers bring different improvements. Stride
prefetcher can benefit full GC-MC and partial copying more
than full GC-CC and partial compaction. For full GC-CC, it is
because it uses threaded algorithm so that the list access pattern
is rather random. For partial compaction, its marking phase
dominates the time and the object graph tracing order for
marking is also rather random. On the other hand, partial
compaction can benefit most from adjacent prefetcher. This is
because the scanning of live objects often accesses adjacent
area of the object. Except the full GC-CC compaction, all the
collectors achieve more than 2X performance when both
prefetchers are turned on.
5.2 Software prefeteching
We implemented three different pure software prefetching
algorithms in all the collectors. We used them to improve
marking phase, since it is most time consuming and most
memory intensive.

 prefetch-on-grey(POG)[16]: The collector prefetches target
object when it is pushed onto the mark stack, which has a
prefetch distance equal to the interval between the time an
object is pushed and the time it is popped.

 buffered-prefetch(BP) [17]: The collector maintains an extra
prefetch buffer queue. Objects are enqueued to the buffer
from the mark stack till the queue is full or the mark stack is
empty. An object in tail of the buffer is prefetched while the
object in head of the buffer is scanned.

 prefetch-without-mark(PWM)[18]: The collector puts all
reference fields onto the mark stack instead of only those
unmarked objects, so as to delay the access to the objects. A
referenced object can be prefetched right before it is going to
be checked and marked.

We tested the three prefetching techniques. Table 4 lists the
biggest performance improvement for different collection

configurations and their respective prefetchers.
Table 4. Benefit of software prefetching

 Full
GC-MC

Full
GC-CC

Partial
compaction

Partial
Copying

Prefetcher POG POG POG PWM
Speedup 1.11X 1.00X 1.24X 1.21X

Partial compaction benefits mostly from POG prefetcher,
because of its big portion of marking time. Full GC-MC’s
speedup is less than half of partial compaction’s. On the other
hand, the threaded algorithm (full GC-CC) can not benefit from
any software prefetcher, because it needs to access the objects
to build the list, hence no prefetch distance. Partial copying
can benefit most from the PWM prefetcher even with the
overhead caused by pushing more objects onto mark stack.
Although buffered-prefetch can not really bring performance
speedup due to its overhead, we did observe obvious cache
miss reduction.
5.3 Hybrid prefeteching
Performance with both hardware and software prefetchers
(hybrid prefetching) is given in Table 5. All are better than or
equal to the product of the speedups achieved by the two
prefetchers when applied separately except partial copying.
Partial copying cannot get the double pay as others possibly
due to the high bandwidth requirement of the PWM strategy.
Table 5 Benefits of hybrid prefetching
Full GC-MC Full GC-CC Partial compaction Partial Copying

2.74X 1.82X 2.67X 2.54X

When the hardware prefetchers are on and GC-MC with partial
collection is used, software prefetching (POG) can further
reduce total GC time of SPECjbb2005 execution by 18% in
Tulsa. Consequently, SPECjbb2005 performance has 4.6%
further improvement compared to the hardware prefetching
baseline.
6. Other Design Tradeoffs
There are other design tradeoffs worth mentioning which
impact the final delivered performance.
6.1 Remember-set vs. heap scanning
One tradeoff is to use extra space for remember-set to keep
repointed reference slots found in during marking, rather than
scanning the heap a second pass to find them for fixing the
pointers. This is to trade space for heap scanning time.
Although Abuaiadh et al. [19] think it is unacceptable to
remember all the reference slots for full heap compaction, our
experiments suggest the real space overhead is less than 5%
even for 16 warehouses. Table 6 lists the impact on space and
collection time when remember-set is not used. It shows the
collection time can be about 9% more if without remember-set.
In our experiments, the overall SPEC score is reduced by 2.3%.
Table 6. Effect of removing the remember-set

Partial compaction Full GC-MC
8WH 16WH 8WH 16WH

Space Time Space Time Space Time Space Time
-0.2% 9.4% -0.4% 9.9% -2.3% 7.4% -4.5% 7.1%

6.2 Mark-bit table traversal vs. object access
Another design tradeoff is with the mark-bit table traversal.
People usually believe that the mark-bit table traversal is much
cheaper than the heap traversal because of its much smaller size
(usually 1/32 of the heap size). Some researchers even
proposed to mark the bit for the last word of an object [20], so
that the size of an object can be got by traversing the mark-bit
table without accessing the object header metadata.
Bit manipulation can cause unexpected overhead if used
improperly. We found that our “bit-skip” approach improves
the mark-bit table traversal performance. This approach skips

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

8 WH 10 WH 12 WH 14 WH 16 WH

D
T

LB
 m

is
s

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

L1
 c

ac
he

 m
is

s

GC-CC DTLBmiss Tulsa GC-MC DTLBmiss Tulsa

GC-CC DTLBmiss Unisy s GC-MC DTLBmiss Unisy s
GC-CC L1miss Tulsa GC-MC L1miss Tulsa

GC-CC L1miss Unisy s GC-MC L1miss Unisy s

Figure 9. Memory profile of the Mutator

the bits for current object body by computing its size with
information in object header, and then checks the following bits
to identify next live object location. We also employed the fast
bit scanning instruction “BSF” [21] in Intel X86 processors to
further reduce the bits operations. Table 7 gives the speedups of
the given phases with the two optimizations in Tulsa platform.
Table 7. Speedups by mark-bit table traversal optimizations

 Repointing
(GC-MC)

Moving
(GC-MC)

Moving
(GC-CC)

bit-skip 1.24X 1.09X 1.22X

bit-skip+ BSF 1.37X 1.43X 1.25X

6.3 Space zeroing site and size
One another very interesting design tradeoff is the invocation
site for “space zeroing”, i.e., to nullify the space before it is
used for object allocation. We found the most effective way is
to zero the space before object allocation but with carefully
tuned space zeroing size (2KB in our case). Basically, the
zeroing actually acts as software prefetching. We do not want to
zero the space too early such as right after a collection, and we
need a suitable size to amortize the zeroing overhead.

7. Related Work
Blackburn et al. [22] gave a comprehensive study on the
performance impact of various GC strategies. Different
applications are characterized with different heap sizes, and
different GC algorithms. Our paper is focused on compacting
collectors.
An early work [23] on performance comparison of compacting
collectors gave algorithm complexity analysis on four different
compacting collectors and summarized that the Lisp 2
algorithm performs best. The four collectors’ detailed
descriptions can be found in [4][5][6][24] respectively. Our
work demonstrates that algorithm complexity differs from real
performance.
The idea of partial heap collection is partly inspired by
incremental compaction [11][12]. We implemented and
evaluated two different collection algorithms and partial
copying collector performs better than partial compacting
collector. Our adaptive strategy is inspired by dual-mode GC
[13] which switched between two modes of collections
adaptively by computing the residency. In our work, the switch
is triggered by a dynamically computed space size threshold.
Boehm [16] presented the first work that uses software
prefetching to reduce cache misses. It issues prefetching for a
live object when it is marked and put onto the mark stack. Cher
et al.[17] argued that this strategy suffers from the variable
prefetch distance which may cause the fetched data be replaced
from the cache before it is really used. They proposed a
buffered prefetch approach and showed better performance
with simulation. Our experiments found the overhead of
buffered prefetch is too high to be really beneficial.
Diwan et al. [25] studied the memory subsystem performance
using memory simulator. Huang et al. [26] studied cache access
locality improvement with object online reordering technique.
Abuaiadh et al. [19] shows order preserving during collection is
important for object locality. Our experiments in real machines
showed that, by preserving allocation order, the TLB locality of
compacting collector is better than copying collector.
Recently the research about compacting collectors are more
focused on the parallel/concurrent design [19][20], and
Abuaiadh et al. developed a new compacting collector that
even the restricted parallel version can outperform the threaded
algorithm.
We believe what we learned in this paper are helpful for the
parallel/concurrent GC developers to select their baseline
sequential compaction algorithm. A parallel generational
compacting collector is recently developed for Apache
Harmony based on GC-MC.

8. Summary
In this work, we have extensive evaluations on two compacting
collectors in Apache Harmony, and studied several design
tradeoffs. The adaptive mechanism and the memory prefetching
techniques we developed were proved effective to improve the
compacting collectors’ performance.
We found the best performing compacting collector algorithm
highly depends on the target platform, the applied
optimizations and performance tunings. The actual result can
be contrary to the algorithmic complexity analysis. The
processor memory hierarchy design sometimes decides the
final winner. Our experiments suggest that a combination of
GC-MC full heap compaction with partial copying collection
can perform best with SPECJbb2005 in Tulsa platform.
Our next step is to apply what we learned in this work to more
advanced collector design with more workloads study.

References
[1] S. Borman. S. Sanitation, Understanding the IBM Java Garbage

Collector, http://www.ibm.com/.
[2] N. Nagarajayya and J. Steven Mayer, Improving Java Application

Performance and Scalability by Reducing Garbage Collection Times
and Sizing Memory Using JDK 1.4.1. http://developers.sun.com/

[3] Apache Harmony, http://incubator.apache.org/harmony.
[4] R. E. Jones. Garbage Collection: Algorithm for Automatic Dynamic

Memory Management. Wiley, Chichester, July 1996.
[5] H.B. M. Jonkers. A fast garbage compaction algorithm. Information

Processing Letters, July 1979
[6] F. L. Morris. A time- and space-efficient garbage compaction

algorithm. Communications of the ACM, 21(8):662-5 1978
[7] http://www.spec.org/jbb2005/
[8] The Dacapo benchmark suite. http://dacapobench.org/
[9] http://www.spec.org/jAppServer2004/
[10] Vtune Performance Analyzer. http://www.intel.com/cd/software
[11] B. Lang and F. Duport. Incremental incrementally compacting

garbage collection. In SIGPLAN’87 Symposium on Interpreters and
Interpretive Techniques, volume 22(7) of ACM

[12] O.B.Yitzhak, I. Goft, E. Kolodner, K. Kuiper, and V. Leikehman.
An algorithm for parallel incremental compaction. In David Detlefs,
editor, ISMM’02.

[13] P. Sansom. Dual-Mode Garbage Collection. In Third Int.
Workshop on the Parallel Implementation of Functional Languages,
September 1991."

[14] P. McGachey and A. L. Hosking, Reducing Generational Copy
Reserve Overhead with Fallback Compaction, ISMM’06

[15] Intel Corporation. IA32 Intel® Architecture Optimization
Reference Manual.

[16] Boehm, H.-J. Reducing garbage collector cache misses. ISMM’00.
[17] C. Y. Cher, A. L. Hosking, T. N. Vijaykumar, Software Prefetching

for Mark-Sweep Garbage Collection: Hardware Analysis and
Software Redesign. ASPLOS’04.

[18] R. Garner, S. Blackburn, D. Frampton, Effective prefetch for mark
sweep garbage collection, Talk given in Intel, Oct. 2006

[19] D. Abuaiadh, Y. Ossia, E. Petrank and U. Silbershtein, An efficient
parallel heap compaction algorithm. OOPSLA’04.

[20] H. Kermany, E. Petrank, The compressor: Concurrent, Incremental,
and parallel compaction, PLDI’06.

[21] Intel Corp. Intel Architecture Software Developer’s manual.
[22] S. M. Blackburn, P. Cheng and K. S. Mckinley, Myths and

Realities: The Performance Impact of Garbage Collection.
SIGMETRICS’04

[23] J. Cohen and A. Nicolau, Comparison of compacting algorithms
for garbage collection. ACM Transactions on Programming
Languages and Systems, 5(4):532-553, 1983

[24] Wilson. P. R. Uniprocessor Garbage Collection Techniques.
Technical Report. University of Texas, Janualry, 1995

[25] A. Diwan, D. Tarditi and E. Moss, Memory Subsystem
Performance of Programs Using Copying Garbage Collection.
POPL’94.

[26]X.Huang, S. M. Blackburn, K. S. Mckinley, J. B. Moss. The
Garbage Collection Advantage: Improving Program Locality, In
OOPSLA’04

