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Abstract: 
Compacting garbage collector (GC) has been recognized for its 
benefits in allocation efficiency and space utilization. Some 
commercial runtime systems are known to have compacting 
GC implemented [1][2]. Apache Harmony [3], an open source 
Java SE implementation, also has two versions of compacting 
GC built in, which were developed based on classical 
compaction algorithms. Our experiments with Harmony 
compacting collectors showed that the delivered performance is 
sensitive to the underlying platforms. A better performing 
collector in one platform can perform worse in another. In this 
paper, we evaluated Harmony compacting collectors in modern 
platforms with standard server benchmark, characterized the 
collectors’ behavior in details and studied several design 
tradeoffs. Based on the evaluation, we propose several 
optimization techniques at different levels. Adaptive partial 
heap collection reduces the collection time dramatically 
without generational GC support. Memory prefetching 
techniques are studied as well. While hardware prefetching 
performs well with mark-compaction, pure software 
prefetching can reduce the collection time by up to 24%. We 
also found that good careful tuning of certain hotspots are more 
important than expected. 

1. Introduction 
Automatic garbage collection is popular in modern 
programming languages such as Java or C#. It relieves the 
burden of explicit memory management from programmer. 
Compared with copying collector, compacting collector does 
not reserve additional space for object moving, hence has better 
space efficiency. Moreover, it has no fragmentation problem 
that exists in mark-sweep collector. Compacting collector has 
another believed advantage in object locality by preserving the 
object order during collection. Because of the merits, 
compacting collectors are implemented in some commercial 
runtime systems [1][2]. Apache Harmony [3], an open source 
Java SE implementation, has two versions of compacting 
collectors built in. We call them GC-MC (mark&compact) and 
GC-CC (copy&compact) in this paper. The former is based on 
the classical Lisp2 algorithm [4], and the latter follows the 
well-known threaded algorithm originated from Jonkers [5] and 
Morris [6].  
Compacting collector has also its downsides. A notorious issue 
is the long collection time. Since the compaction process 
moves objects on site, it can not finish in one pass. Besides the 
marking pass which identifies the live objects, a typical 
compaction algorithm needs additional pass(es) to compute 
object moving target and conduct the movement. Each pass 
usually means a full heap walking, which is time consuming 
and memory unfriendly. The other issue with compacting 
collector is its space overhead. Usually a compacting collector 
needs auxiliary space for mark-bit table, installing forwarding 
pointer (or offset table in recent work), and sometimes 
remembering reference slots as well.  
Although various compaction algorithms were studied 
previously, their design tradeoffs and performance implications 
are yet to be understood in modern platforms with server 
workload. Recently the published work on compacting 
collectors are mainly about the parallelization and scalability, 

we think it is still important to understand the behavior and 
design tradeoffs in sequential compacting collectors, so as to 
provide a good foundation for their parallel version. 
To achieve our goal, we evaluated two compacting collectors 
thoroughly in two different modern platforms with 
SPECJBB2005 benchmark. We compared the two collectors in 
details and developed several optimizations. The main 
contributions of this paper are: 
1. We had apple-to-apple comparisons between two 

compacting collectors on real machines, giving detailed 
behavior characterizations and performance analyses; 

2. We developed an adaptive partial heap collection 
mechanism that can reduce the compaction time 
dramatically while maximizing the overall GC throughput; 

3. We studied memory prefetching techniques, and analyzed 
their applicability. Our software prefetching can improve 
SPECjbb2005 performance by up to 4.6%; 

4. One key lesson we learned is, the actual performance of a 
collector is highly dependent on the underlying platform. 
A new memory hierarchy design can turn a collection 
algorithm from a loser to a winner. 

We believe our work has laid a solid foundation for next step 
Harmony GC development. The framework also enables 
Harmony developers to implement and study other collection 
algorithms.  
1.1 Apache Harmony GC Framework 
Harmony is developed with modularity as one major pursuit. 
The GC component in Harmony interacts with the core runtime 
through a set of defined interface APIs. Any collector that 
implements the interface can be plugged into Harmony as a 
dynamically loaded object. At the time when this paper is 
written, there are three different garbage collectors 
implemented in Harmony, two of which are compacting 
collectors and are studied in this paper.  
The paper is organized as follows. In Section 2 we briefly 
describe the compacting algorithms in Harmony, and then 
introduce our experimental platforms. In Section 3, we 
characterized the collectors in two platforms, a Unisys ES7000 
and an Intel Tulsa system. We discuss adaptive partial heap 
collection in Section 4. In Section 5 we discuss the memory 
prefetching techniques. More tradeoffs during performance 
tuning are described in Section 6. Section 7 is related work 
discussion, and we conclude the work in Section 8. 

2. The Collectors and Evaluation Platforms 
In this section, we introduce the baseline algorithms of the two 
Harmony compacting collectors; then we describe our 
experimental platforms and evaluation methodology.  
2.1 GC-MC compaction algorithm 
Harmony has two compacting collectors implemented. They 
were developed based on two classical algorithms respectively.  
GC-MC is based on the Lisp2 compacting algorithm [4]. The 
compaction process consists of four phases:  

 Marking phase that traces from the roots set and marks 
all the live objects in the heap; 

 Repointing phase that computes the new addresses of the 
live objects and install a forwarding pointer for each; 

 Fixing phase that adjusts all the repointed references to 
point to their new locations;  



 Moving phase that really moves the live objects to their 
new locations.  

An explicit mark-stack is used during the marking phase. An 
object is marked by marking a bit in the mark-bit table, where 
one bit represents a four-byte word in the heap. The live objects 
are sliding-compacted to the lower end of the heap. Target 
addresses of all live objects are computed and written into the 
object headers as the forwarding pointers. In fixing phase, all 
the reference fields of live objects are updated to be the 
forwarding pointer of the referent object. 
2.2 GC-CC compaction algorithm 
The compaction algorithm in GC-CC is based on the threaded 
algorithm credited to Jonkers [5] and Morris [6]. It is more 
elaborate than GC-MC in that, it has only two phases (marking 
and moving) and does not need auxiliary data structure for 
forwarding pointer. GC-CC builds a reference list for every live 
object by reusing the original reference fields in the objects. 
The list for a live object links all the fields that contain 
references to the object. When an object is moved in moving 
phase, all references to it are updated by traversing the list.  
References of two directions (pointing from low to high and 
from high to low) are treated differently when the list is built. 
Those references from high to low are added into the list in the 
marking phase, while the opposite direction references are 
added when their containing objects are moved. 
2.3 Evaluation methodology 
Since GC-MC and GC-CC share the same infrastructure in 
Harmony, we are able to have apple-to-apple comparisons 
between them.  
We run Harmony in two different modern platforms. One is a 
Unisys ES7000 with eight 3.0GHz Intel Northwood processors 
and 400MHz FSB. The other is Intel Tulsa platform with four 
3.2GHz Intel Pentium-D dual-core processors and 800MHz 
FSB. The Northwood processor each has 8KB L1 data cache, 
512KB unified L2 on-chip cache, 4MB L3 unified cache and a 
64-entry data TLB. A 32MB L4 cache is shared by 4 
Northwood processors. One core of the Pentium-D processor 
has 16KB L1 data cache, 1MB unified L2 on-chip cache, 8MB 
L3 unified cache shared with another core in same processor 
and also a 64-entry data TLB. Tulsa platform is newer and has 
more advanced memory hierarchy. 
SPECjbb2005 [7] is the workload we use. According to the 
reporting rule, a valid run of SPECjbb2005 in our platforms 
reports a final score based on the scores achieved from 8 
through 16 warehouses. Our experiments showed that 1GB 
heap size means about 20% live object residency in the heap 
space with 8 warehouses, and about 40% with 16 warehouses. 
In this paper, we only show the data with 1GB heap size 
because we found different heap size does not seriously change 
our conclusions in GC module relative comparisons, although 
the absolute values and SPECjbb2005 scores are impacted. 
More workloads such as Dacapo [8] and SPECJAppServer [9] 
are also under investigation and we hope to report in future. 
We use Intel Vtune [10], a performance tool, to uncover the 
detailed characteristics of the executions. Its event-based 
sampling (EBS) reads the hardware performance counters of 
the processor; hence we can get runtime information with 
minimum interference with the application execution. 

3. Characterizations of GC-MC and GC-CC 
In this section we characterize GC-MC and GC-CC in the 
Unisys and Tulsa platforms. To avoid the results being skewed 
by suboptimal implementations, the characterizations in this 
section include the optimizations that we will describe in 
following sections. 

3.1 Characterizations in Unisys platform 
We first give the average collection time breakdown of the 
compacting collectors. For GC-MC, the marking phase is 
further partitioned into the time for the first-time object 
touching (mark first), the time for remembering the re-pointed 
reference slots (mark remember) and the rest (mark others). 
Both the repointing and moving phases need to traverse the 
mark-bit table, so we separate the mark-bit table traversal time 
from their belonged phases: The time in repointing phase is 
repoint traversal and that in moving phase is move traversal. 
For GC-CC, we separate the list-related operation time into 
three parts: list building in marking phase (mark list-build), list 
updating in moving phase (move list-update), and reference 
updating in moving phase (move list-reference). Figure 1 shows 
the time breakdown of both collectors’ average collection time 
over five runs in the Unisys platform. 

We can see from the figure that the four phases of GC-MC 
almost evenly partition the collection time, with a surprising 
exception that the moving phase takes the least time while 
marking takes most. This is surprising because people’s 
intuition is the real object movement would be the most time 
consuming phase. In the marking phase, the first-time object 
touch takes a big portion (17.6%) that is almost equal to the 
moving phase time. This gives us an impression on how 
intensive the memory operations are in GC-MC. The situation 
is even more obvious in GC-CC, where the first-time object 
touch takes more than 30% of the total time. These imply good 
potentials for memory prefetching, which we will discuss later. 

Another interesting observation is that the list-related 
operations take more than 40% of GC-CC time. Because list is 
a dynamic data structure, it is not straightforward to improve its 
operation time. The list building part takes invisible percentage 
in the time bar, which means the number of references pointing 
from high to low is small. A side note is: This means a 
generational collector would match the behavior well. 

Table 1. Memory profile on Unisys 
     8WH 10WH 12WH 14WH 16WH
GC-MC 0.087 0.087 0.088 0.090 0.090

IPC
GC-CC 0.092 0.095 0.093 0.081 0.079

GC-MC 0.451 0.432 0.443 0.443 0.445Loads
per inst GC-CC 0.361 0.363 0.373 0.374 0.353

GC-MC 8.41% 8.76% 8.31% 10.1% 9.05%L1 miss
ratio GC-CC 5.75% 5.33% 5.61% 6.20% 5.62%

GC-MC 3.62% 3.57% 4.02% 5.08% 3.74%L2 miss
ratio GC-CC 2.54% 2.44% 2.42% 2.52% 2.70%

GC-MC 0.45% 0.48% 0.48% 0.48% 0.48%DTLB 
miss 
ratio GC-CC 0.59% 0.63% 0.57% 0.68% 0.61%
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Figure 1. Execution time breakdown on Unisys 
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Table 1 shows the memory access profile of the two collectors. 
We collected the IPC, number of loads per instruction, L1 
cache miss ratio, L2 global cache miss ratio, and DTLB miss 
ratio. We can see GC-MC has more memory accesses, more 
cache misses but less DTLB misses. IPCs of both collectors are 
low in this platform. These might mean that both collectors’ 

behavior does not match well with the underlying hardware, 
and the threaded reference list causes more page walks.  
The overall performance comparisons between the two 
collectors are shown in Figure 2. 
In Figure 2, the number is the lower is better. The average 
collection time of GC-MC is higher (~17%) than GC-CC, but 
the difference of total accumulated collection time during the 
whole application execution is not so big (~7%). That means 
GC-MC collections happen less times during a fixed period 
because of its longer time. The overall SPECJbb2005 score of 
GC-MC is worse than GC-CC because of its higher collection 
time. Note we use the reciprocal of the SPEC score for the 
comparison so that the proportional relation between GC time 
and SPEC score can be clearly demonstrated. 
3.2 Characterization in the Tulsa platform 
The function profile of both collectors in Tulsa platform is 
shown in Figure 3. Compared to Figure 1, the memory 
intensive operations take less percentage in Tulsa. For example, 
the fixing phase is 5% less in percentage and the first-time 
object touch is 10% less. The list manipulation part in GC-CC 
is reduced to 35%. This is because of the newer memory 
hierarchy design in Tulsa platform. The memory profile next 

confirms this assertion. 
Table 2 gives the memory profile in Tulsa platform. The IPCs 
of both collectors are increased by 4X~5X due to the reduced 
cache misses. The double-sized cache of Tulsa core can 
effectively reduce the cache miss ratios by 2X~3X. The table 
also shows that the cache access improvement in GC-CC is 
smaller compared to GC-MC, which is mainly due to the 
random memory access pattern of the reference list. We 
speculate the threaded algorithm would be less friendly to the 
latest progress in modern processor memory hierarchy. 
The overall performance comparison in Tulsa is given in Figure 
4. Interestingly, we find the curves of the two collectors reverse 
their positions compared to Figure 2: GC-MC performs 

uniformly better than GC-CC. This is not surprising though, 

since the intensive memory operations and their regular access 
pattern in GC-MC can benefit more from Tulsa. Figure 4 also 
shows proportional relation between total GC time and 
achieved SPEC score. 

Table 2. Memory profile on Tulsa 
 8WH 10WH 12WH 14WH 16WH

GC-MC 0.409 0.408 0.408 0.428 0.398
IPC 

GC-CC 0.354 0.349 0.344 0.341 0.338
GC-MC 3.66% 3.80% 3.92% 3.85% 3.99%L1 miss 

ratio GC-CC 3.06% 3.23% 3.33% 3.33% 3.18%
GC-MC 1.31% 1.32% 1.40% 1.41% 1.38%L2 miss 

ratio GC-CC 0.95% 1.01% 1.11% 1.09% 1.11%
GC-MC 0.85% 0.84% 0.87% 0.88% 0.86%DTLB 

miss ratio GC-CC 1.06% 1.09% 1.12% 1.13% 1.10%

4. Adaptive Partial Heap Collection 
Because of the known long time of full heap compaction, 
incremental compaction was proposed [11][12]. The idea is to 
collect part of the heap normally and collect the whole heap 
only when necessary. We developed partial heap collection in 
both GC-MC and GC-CC. In this section, we first describe an 
adaptive mechanism we designed that determines when to 
trigger a full collection; then we discuss the application of a 
copying collector for partial collection. 
4.1 The adaptive partial heap collection idea 
We designed the partial heap collection by collecting only the 
objects allocated after last collection. This is actually similar to 
a generational GC except that we do not employ write barriers 
to remember the references from old objects to the newly 
allocated ones; instead, those references are discovered by 
scanning the heap. In this way the partial heap collection has 
the same marking phase as full heap collection. The 
computations in other phases will be much reduced. Since other 
phases in our collectors takes more than half of the total 
collection time in both platforms, we can expect an obvious GC 
time reduction. 
The downside of partial collection is, since it reclaims only the 
newly allocated area, the space for those dead objects in old 
area can not be reclaimed. This will trigger more frequent 
collections, which are undesirable for overall application 
performance. In order to guarantee the effectiveness of partial 
collection, we propose an adaptive strategy to guide the 
collector to trigger partial or full collection. The goal of the 
strategy is to maximize the overall GC throughput, which is 
measured as the ratio of total produced free space in all the 
collections to the sum of all the collection times, i.e., 

Throughput = ΣSizeofFreeSpace / ΣTimeofCollection  (1) 
We assume the free space size after a full collection is Smax, and 
the threshold free space size for triggering a full collection is 
Smin. After each partial collection, size of dS newly allocated 
objects can survive. This means for every (Smax – Smin)/dS times 
of partial collections, a full collection will be triggered. If each 
partial collection takes time Tfast, and a full collection spends 
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Figure 4. Performance comparison in Tulsa 

9.3%

8.8%

18.0
%

15.8
%

7.4%

26.2
%

7.4%
7.2%

m ark(f irs t)

m ark(rem b.)

m ark(othr.)

repoint(trav .)

repoint(othr.)

f ix

m ov e(trav .)

m ov e(othr.)

 

10.1
%

8.1%

16.7
%

18.3
%

24.1
%

22.4
%

0.2%

mark(list-build)

mark(f irst)

mark(othr.)

mov e(list-updt)

mov e(list-ref )

mov e(trav .)

mov e(othr.)

 
Figure 3. Execution time breakdown on Tulsa

GC-MC GC-CC 



time Tslow, the total time spent for all the collections between 
two full collections is: 

T = ((Smax – Smin)/dS) * Tfast + Tslow   (2) 
The total free space size produced during this period is 

(computed as a series): 
S = (Smax+Smin)*(Smax – Smin + dS)/2*dS  (3) 

According to (1), the throughput approximation between two 
full collections is S/T. Since Smax, Tslow, Tfast and dS can be 
measured at runtime, the maximal S/T can be reached with a 
certain value of Smin. This Smin value is the threshold to trigger a 
full heap collection. When the remaining free space size is less 
than Smin, a full collection should be carried out.  
We applied this adaptive strategy with GC-MC for its partial 
collection, and the average collection time is shown in Figure 5. 
The newly produced live data size dS is also shown. 

The collection time is normalized to that of 8 warehouses. We 
can see that the partial collection time is less than half of the 
full collection time. And the partial collection time is roughly 
proportional to the newly produced live data size dS. 
We measured the performance improvement of GC-MC with 
partial collection over full-collection-only GC-MC in both 
platforms. The results are shown in Figure 6. As a comparison, 
Figure 6 also shows the performance without the adaptive 
strategy. Without adaptation, Smin is half of the total heap size. 

Figure 6 shows that the adaptive partial collection can improve 
the performance by more than 10% in both platforms, and the 
adaptive strategy itself contributes more than 2% in average.  
An interesting observation is the partial collection can benefit 
more with more warehouses in Tulsa platform. As we discussed 
above, partial collection can not improve the marking phase, 
which becomes more and more dominant when the warehouse 
number increases, hence is benefited more.  
4.2 Copying collector for partial heap collection 
While the full collection uses compaction algorithm, we can 
employ a different one for the partial collection. Copying 
collector is a good candidate to reduce the partial collection 
time. The main reason for choosing copying collector is it has 
only one pass, and the condition for reserved copy space can be 
met normally. If the reserved space is not enough for copying, 
the collector can simply fall back to compaction algorithm. The 

copy reserve space can be much smaller than the collected 
space. The idea of using copying collection in common case 
and falling back to compaction is not new [13]; recently it is 
applied for mature space collection in a generational GC [14].  
We implemented this design in GC-CC with a depth-first 
copying collector, and set the reserved space to be one-fifth of 
the from-space. We compared the average collection time of 
partial heap compaction and partial heap copying in two 
platforms. The results are shown in Figure 7. A copying 
collector is indeed faster: Its collection time is about 60% of 
partial compaction with 8 warehouses, and about 70% with 16 
warehouses. In Tulsa, it saves less, because compaction can 
benefit more from its new memory hierarchy design. 

We also collected the average collection time of full-heap 
GC-CC and partial-heap GC-CC with adaptive copying 
collector as shown in Figure 8. The partial copying collection 
time is less than one third of a full GC-CC collection. 

However, faster partial heap collection does not necessarily 
mean overall better performance. In our experiments, GC-CC 
with partial copying actually has similar throughput as GC-MC 
with partial compaction. A believed disadvantage of copying 
collector is that, its object locality can be hurt because it does 
not preserve the object order. To verify this traditional wisdom, 
we collected the memory profile of mutator threads with both 
copying and compacting collectors, as shown in Figure 9.  
The data confirm that copying collector causes more DTLB 
misses than the compacting collector in both Unisys and Tulsa 
platforms. Nevertheless, we find the L1 cache miss rates of 
them are very close. This means that object order preservation 
is more important to the page-level locality than the cache-level 
locality for SPECjbb2005. We think the reason is that the 
depth-first copying collector can well keep the cache-level 
locality, but can not with the page-level locality. In our 
experiments, the DTLB misses can slow down the mutator 
execution by up to 4%. The TLB misses can be reduced with 
larger hardware page size, while that’s true for both collectors. 

5. Memory Prefetching Techniques 
As we discussed in previous sections, the intensive memory 
operations in the collectors may imply the importance of a 
good memory prefetcher. In this section, we discuss the 
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prefetching techniques used in our compacting collectors. We 
address the topic in hardware prefetching and software 
prefetching separately. 

5.1 Harware prefetching 
Tulsa has two hardware prefetchers [15] which can be turned 
on/off via BIOS setting. They are adjacent cache line 
prefetcher that prefetches the adjacent 64-byte line in a 
128bytes sector when a cache line is loaded, and stride 
prefetcher that attempts to stay 256 bytes ahead to prefetch the 
cache line. 
We measured the collection time of different collector 
configurations (full heap GC-MC, full heap GC-CC, partial 
heap compaction, and partial heap copying) with Tulsa 
hardware prefetchers. The speedups are given in Table 3. 
Table 3. Speedups with hardware prefethers 

Collectors 
Prefetchers 

Full 
GC-MC 

Full 
GC-CC 

Partial 
compaction 

Partial 
copying 

Stride 2.00X 1.53X 1.53X 1.88X 
Adjacent 1.42X 1.40X 1.61X 1.54X 
Both on 2.47X 1.82X 2.12X 2.25X 

The speedups are significant for all the collectors, while 
different prefetchers bring different improvements. Stride 
prefetcher can benefit full GC-MC and partial copying more 
than full GC-CC and partial compaction. For full GC-CC, it is 
because it uses threaded algorithm so that the list access pattern 
is rather random. For partial compaction, its marking phase 
dominates the time and the object graph tracing order for 
marking is also rather random. On the other hand, partial 
compaction can benefit most from adjacent prefetcher. This is 
because the scanning of live objects often accesses adjacent 
area of the object. Except the full GC-CC compaction, all the 
collectors achieve more than 2X performance when both 
prefetchers are turned on. 
5.2 Software prefeteching  
We implemented three different pure software prefetching 
algorithms in all the collectors. We used them to improve 
marking phase, since it is most time consuming and most 
memory intensive. 

 prefetch-on-grey(POG)[16]: The collector prefetches target 
object when it is pushed onto the mark stack, which has a 
prefetch distance equal to the interval between the time an 
object is pushed and the time it is popped. 

 buffered-prefetch(BP) [17]: The collector maintains an extra 
prefetch buffer queue. Objects are enqueued to the buffer 
from the mark stack till the queue is full or the mark stack is 
empty. An object in tail of the buffer is prefetched while the 
object in head of the buffer is scanned. 

 prefetch-without-mark(PWM)[18]: The collector puts all 
reference fields onto the mark stack instead of only those 
unmarked objects, so as to delay the access to the objects. A 
referenced object can be prefetched right before it is going to 
be checked and marked. 

We tested the three prefetching techniques. Table 4 lists the 
biggest performance improvement for different collection 

configurations and their respective prefetchers.  
Table 4. Benefit of software prefetching 

 Full 
GC-MC

Full 
GC-CC

Partial 
compaction 

Partial 
Copying 

Prefetcher POG POG POG PWM 
Speedup 1.11X 1.00X 1.24X 1.21X 

Partial compaction benefits mostly from POG prefetcher, 
because of its big portion of marking time. Full GC-MC’s 
speedup is less than half of partial compaction’s. On the other 
hand, the threaded algorithm (full GC-CC) can not benefit from 
any software prefetcher, because it needs to access the objects 
to build the list, hence no prefetch distance. Partial copying  
can benefit most from the PWM prefetcher even with the 
overhead caused by pushing more objects onto mark stack. 
Although buffered-prefetch can not really bring performance 
speedup due to its overhead, we did observe obvious cache 
miss reduction. 
5.3 Hybrid prefeteching  
Performance with both hardware and software prefetchers 
(hybrid prefetching) is given in Table 5. All are better than or 
equal to the product of the speedups achieved by the two 
prefetchers when applied separately except partial copying. 
Partial copying cannot get the double pay as others possibly 
due to the high bandwidth requirement of the PWM strategy.  
Table 5 Benefits of hybrid prefetching 
Full GC-MC Full GC-CC Partial compaction Partial Copying

2.74X 1.82X 2.67X 2.54X 

When the hardware prefetchers are on and GC-MC with partial 
collection is used, software prefetching (POG) can further 
reduce total GC time of SPECjbb2005 execution by 18% in 
Tulsa. Consequently, SPECjbb2005 performance has 4.6% 
further improvement compared to the hardware prefetching 
baseline. 
6. Other Design Tradeoffs 
There are other design tradeoffs worth mentioning which 
impact the final delivered performance. 
6.1 Remember-set vs. heap scanning 
One tradeoff is to use extra space for remember-set to keep 
repointed reference slots found in during marking, rather than 
scanning the heap a second pass to find them for fixing the 
pointers. This is to trade space for heap scanning time. 
Although Abuaiadh et al. [19] think it is unacceptable to 
remember all the reference slots for full heap compaction, our 
experiments suggest the real space overhead is less than 5% 
even for 16 warehouses. Table 6 lists the impact on space and 
collection time when remember-set is not used. It shows the 
collection time can be about 9% more if without remember-set. 
In our experiments, the overall SPEC score is reduced by 2.3%. 
Table 6. Effect of removing the remember-set 

Partial compaction Full GC-MC 
8WH 16WH 8WH 16WH 

Space Time Space Time Space Time Space Time
-0.2% 9.4% -0.4% 9.9% -2.3% 7.4% -4.5% 7.1%

6.2 Mark-bit table traversal vs. object access 
Another design tradeoff is with the mark-bit table traversal. 
People usually believe that the mark-bit table traversal is much 
cheaper than the heap traversal because of its much smaller size 
(usually 1/32 of the heap size). Some researchers even 
proposed to mark the bit for the last word of an object [20], so 
that the size of an object can be got by traversing the mark-bit 
table without accessing the object header metadata.  
Bit manipulation can cause unexpected overhead if used 
improperly. We found that our “bit-skip” approach improves 
the mark-bit table traversal performance. This approach skips 
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the bits for current object body by computing its size with 
information in object header, and then checks the following bits 
to identify next live object location. We also employed the fast 
bit scanning instruction “BSF” [21] in Intel X86 processors to 
further reduce the bits operations. Table 7 gives the speedups of 
the given phases with the two optimizations in Tulsa platform. 
Table 7. Speedups by mark-bit table traversal optimizations 

 Repointing 
(GC-MC) 

Moving 
(GC-MC) 

Moving 
(GC-CC)

bit-skip 1.24X 1.09X 1.22X 

bit-skip+ BSF 1.37X 1.43X 1.25X 

6.3 Space zeroing site and size 
One another very interesting design tradeoff is the invocation 
site for “space zeroing”, i.e., to nullify the space before it is 
used for object allocation. We found the most effective way is 
to zero the space before object allocation but with carefully 
tuned space zeroing size (2KB in our case). Basically, the 
zeroing actually acts as software prefetching. We do not want to 
zero the space too early such as right after a collection, and we 
need a suitable size to amortize the zeroing overhead. 

7. Related Work 
Blackburn et al. [22] gave a comprehensive study on the 
performance impact of various GC strategies. Different 
applications are characterized with different heap sizes, and 
different GC algorithms. Our paper is focused on compacting 
collectors. 
An early work [23] on performance comparison of compacting 
collectors gave algorithm complexity analysis on four different 
compacting collectors and summarized that the Lisp 2 
algorithm performs best. The four collectors’ detailed 
descriptions can be found in [4][5][6][24] respectively. Our 
work demonstrates that algorithm complexity differs from real 
performance. 
The idea of partial heap collection is partly inspired by 
incremental compaction [11][12]. We implemented and 
evaluated two different collection algorithms and partial 
copying collector performs better than partial compacting 
collector. Our adaptive strategy is inspired by dual-mode GC 
[13] which switched between two modes of collections 
adaptively by computing the residency. In our work, the switch 
is triggered by a dynamically computed space size threshold. 
Boehm [16] presented the first work that uses software 
prefetching to reduce cache misses. It issues prefetching for a 
live object when it is marked and put onto the mark stack. Cher 
et al.[17] argued that this strategy suffers from the variable 
prefetch distance which may cause the fetched data be replaced 
from the cache before it is really used. They proposed a 
buffered prefetch approach and showed better performance 
with simulation. Our experiments found the overhead of 
buffered prefetch is too high to be really beneficial. 
Diwan et al. [25] studied the memory subsystem performance 
using memory simulator. Huang et al. [26] studied cache access 
locality improvement with object online reordering technique. 
Abuaiadh et al. [19] shows order preserving during collection is 
important for object locality. Our experiments in real machines 
showed that, by preserving allocation order, the TLB locality of 
compacting collector is better than copying collector.  
Recently the research about compacting collectors are more 
focused on the parallel/concurrent design [19][20], and 
Abuaiadh et al. developed a new compacting collector that 
even the restricted parallel version can outperform the threaded 
algorithm.  
We believe what we learned in this paper are helpful for the 
parallel/concurrent GC developers to select their baseline 
sequential compaction algorithm. A parallel generational 
compacting collector is recently developed for Apache 
Harmony based on GC-MC. 

8. Summary 
In this work, we have extensive evaluations on two compacting 
collectors in Apache Harmony, and studied several design 
tradeoffs. The adaptive mechanism and the memory prefetching 
techniques we developed were proved effective to improve the 
compacting collectors’ performance. 
We found the best performing compacting collector algorithm 
highly depends on the target platform, the applied 
optimizations and performance tunings. The actual result can 
be contrary to the algorithmic complexity analysis. The 
processor memory hierarchy design sometimes decides the 
final winner. Our experiments suggest that a combination of 
GC-MC full heap compaction with partial copying collection 
can perform best with SPECJbb2005 in Tulsa platform. 
Our next step is to apply what we learned in this work to more 
advanced collector design with more workloads study. 

References 
[1] S. Borman. S. Sanitation, Understanding the IBM Java Garbage 

Collector, http://www.ibm.com/. 
[2] N. Nagarajayya and J. Steven Mayer, Improving Java Application 

Performance and Scalability by Reducing Garbage Collection Times 
and Sizing Memory Using JDK 1.4.1. http://developers.sun.com/  

[3] Apache Harmony, http://incubator.apache.org/harmony. 
[4] R. E. Jones. Garbage Collection: Algorithm for Automatic Dynamic 

Memory Management. Wiley, Chichester, July 1996. 
[5] H.B. M. Jonkers. A fast garbage compaction algorithm. Information 

Processing Letters, July 1979 
[6] F. L. Morris. A time- and space-efficient garbage compaction 

algorithm. Communications of the ACM, 21(8):662-5 1978 
[7] http://www.spec.org/jbb2005/  
[8] The Dacapo benchmark suite. http://dacapobench.org/  
[9] http://www.spec.org/jAppServer2004/ 
[10] Vtune Performance Analyzer. http://www.intel.com/cd/software 
[11] B. Lang and F. Duport. Incremental incrementally compacting 

garbage collection. In SIGPLAN’87 Symposium on Interpreters and 
Interpretive Techniques, volume 22(7) of ACM  

[12] O.B.Yitzhak, I. Goft, E. Kolodner, K. Kuiper, and V. Leikehman. 
An algorithm for parallel incremental compaction. In David Detlefs, 
editor, ISMM’02. 

[13] P. Sansom. Dual-Mode Garbage Collection. In Third Int. 
Workshop on the Parallel Implementation of Functional Languages, 
September 1991." 

[14] P. McGachey and A. L. Hosking, Reducing Generational Copy 
Reserve Overhead with Fallback Compaction, ISMM’06 

[15] Intel Corporation. IA32 Intel® Architecture Optimization 
Reference Manual. 

[16] Boehm, H.-J. Reducing garbage collector cache misses. ISMM’00. 
[17] C. Y. Cher, A. L. Hosking, T. N. Vijaykumar, Software Prefetching 

for Mark-Sweep Garbage Collection: Hardware Analysis and 
Software Redesign. ASPLOS’04. 

[18] R. Garner, S. Blackburn, D. Frampton, Effective prefetch for mark 
sweep garbage collection, Talk given in Intel, Oct. 2006 

[19] D. Abuaiadh, Y. Ossia, E. Petrank and U. Silbershtein, An efficient 
parallel heap compaction algorithm. OOPSLA’04. 

[20] H. Kermany, E. Petrank, The compressor: Concurrent, Incremental, 
and parallel compaction, PLDI’06. 

[21] Intel Corp. Intel Architecture Software Developer’s manual. 
[22] S. M. Blackburn, P. Cheng and K. S. Mckinley, Myths and 

Realities: The Performance Impact of Garbage Collection. 
SIGMETRICS’04 

[23] J. Cohen and A. Nicolau, Comparison of compacting algorithms 
for garbage collection. ACM Transactions on Programming 
Languages and Systems, 5(4):532-553, 1983 

[24] Wilson. P. R. Uniprocessor Garbage Collection Techniques. 
Technical Report. University of Texas, Janualry, 1995 

[25] A. Diwan, D. Tarditi and E. Moss, Memory Subsystem 
Performance of Programs Using Copying Garbage Collection. 
POPL’94. 

[26]X.Huang, S. M. Blackburn, K. S. Mckinley, J. B. Moss. The 
Garbage Collection Advantage: Improving Program Locality, In 
OOPSLA’04 


