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ABSTRACT 
As multithreaded server applications and runtime systems prevail, 

garbage collection is becoming an essential feature to support 

high performance systems. The fundamental issue of garbage 

collector (GC) design is to maximize the recycled space with 

minimal time overhead. This paper proposes two innovative 

solutions: one to improve space efficiency, and the other to 

improve time efficiency. To achieve space efficiency, we propose 

the Space Tuner that utilizes the novel concept of allocation speed 

to reduce wasted space. Conventional static space partitioning 

techniques often lead to inefficient space utilization. The Space 

Tuner adjusts the heap partitioning dynamically such that when a 

collection is triggered, all space partitions are fully filled. To 

achieve time efficiency, we propose a novel parallelization 

method that reduces the compacting GC parallelization problem 

into a tree traversal parallelization problem. This method can be 

applied for both normal and large object compaction. Object 

compaction is hard to parallelize due to strong data dependencies 

such that the source object can not be moved to its target location 

until the object originally in the target location has been moved 

out. Our proposed algorithm overcomes the difficulties by 

dividing the heap into equal-sized blocks and parallelizing the 

movement of the independent blocks. It is noteworthy that these 

proposed algorithms are generic such that they can be utilized in 

different GC designs. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage Management – garbage 

collection.  

General Terms 
Algorithms, Management, Performance. 

Keywords 
Garbage collection, Java Virtual Machine.   

1. I"TRODUCTIO" 
Garbage collection technology is widely used in managed runtime 

systems such as Java virtual machine (JVM) [10] and Common 

Language Runtime (CLR) [14].  Multithreaded applications with 

large heaps running on modern servers present new challenges as 

far as designing suitable garbage collectors is concerned.  

Particularly, server applications are required to operate 

continuously and remain highly responsive to frequent client 

requests. Thus the garbage collector should impose minimum 

pause time while providing maximum throughput. On the other 

hand, increasingly parallel multicore systems will be used even in 

low-end devices that impose real-time constraints. When garbage 

collection is used in these systems, its impact on the overall 

performance needs to be minimized so as to meet the real-time 

constraints.  Meanwhile, garbage collection needs to be effective 

in recycling space, especially when the available memory space is 

limited.  Therefore, to meet the needs of modern and future 

multithreaded applications, it is essential to design garbage 

collectors that provide both space and time efficiency.   

There are two main aspects in garbage collector (GC) design, 

namely, the partitioning of heap space and the algorithms for 

garbage collection. As shown in [2], for better memory 

management, a modern high performance GC usually manages 

large and normal objects separately such that the heap is divided 

into large object space (LOS) and non-large object space (non-

LOS). However, the object size distribution varies from one 

application to another and from one execution phase to the next 

even in one application, thus it is impossible to predefine a proper 

heap partitioning for LOS and non-LOS statically. The current 

known GCs with separate allocation spaces mostly suffer from the 

problem that they don’t fit well with the dynamic variations of 

object size distribution at runtime. This problem leads to 

imbalanced space utilization and impacts the overall GC 

performance negatively. Besides LOS/non-LOS space 

partitioning, the problem of imbalanced space utilization indeed 

exists in any GCs that have multiple spaces. For example, a 

generational GC has typically a young object space and a mature 

object space. The space partitioning for both spaces also needs a 

careful design to achieve maximal GC efficiency.  

For garbage collection algorithms, conventional mark-sweep 

and reference counting collectors are susceptible to fragmentation 

due to the lack of object movements. To address this problem, 

copying or compacting GCs are introduced. Compaction 

algorithms are now widely utilized in GC designs [5, 7, 8, 9]. 

Compaction eliminates fragmentation by grouping live objects 



together in the heap and freeing up large contiguous spaces for 

future allocation. As multi-core architectures prevail, parallel 

compaction algorithms have been designed to achieve time 

efficiency. However, none of the proposed parallel compaction 

algorithms can be used for large object compaction. Large object 

compaction is hard to parallelize due to strong data dependencies 

such that the source object can not be moved to its target location 

until the object originally in the target location has been moved 

out. Especially, when there are only few very large objects, the 

parallelism is seemingly inadequate.  

The fundamental issue of garbage collector (GC) design is to 

maximize the recycled space with minimal time and memory 

overhead. In this paper, we propose two innovative solutions, one 

to improve space efficiency, and the other to improve time 

efficiency. To improve space utilization, we introduce the Space 

Tuner, which adjusts the heap partitioning between the spaces 

dynamically according to the application’s runtime behavior, such 

that when collection happens, both spaces are fully utilized. To 

improve time efficiency, we propose a parallelization algorithm 

that reduces the compaction parallelization problems into a tree 

traversal parallelization problem, and apply it to both normal and 

large object compaction. With these, we complete the algorithmic 

framework for the space and time efficiency in parallel 

compacting garbage collectors. Note that although we 

demonstrate our algorithms on a parallel compacting GC based on 

the LISP2 design [5, 10], these algorithms are indeed generic and 

have much broader applications: The Space Tuner can be utilized 

in any design with multiple allocation spaces, and the parallel 

compacting algorithms can be applied in any design that involves 

object movements.    

In this paper we present the design details of the proposed 

algorithms and evaluate their efficiencies. These algorithms are 

implemented in Apache Harmony, a product-quality open source 

JAVA SE implementation [10]. This paper is organized as 

follows. Section 2 discusses the related work. Section 3 

introduces the basic algorithm designs of the Space Tuner and the 

parallel compaction mechanisms. Section 4 presents the 

implementation details of these designs in Apache Harmony. 

Section 5 evaluates and discusses the design with representative 

benchmarks. And at the end, section 6 summarizes the work. 

2. RELATED WORK 
For better memory management, Caudill and Wirfs-Brock first 

proposed to use separate spaces to manage objects of different 

sizes, large object space (LOS) for large objects and non-large 

object space (non-LOS) for normal objects [1]. Hicks et al. have 

done a thorough study on large object spaces [2]. The results of 

this study indicate three problems for LOS designs. First, LOS 

collection is hard to parallelize. Second, LOS shares the same 

heap with non-LOS, thus it is hard to achieve full utilization of 

the heap space. Third, LOS and non-LOS collections are done in 

different phases, which may affect the scalability of parallel 

garbage collection. In [3], Soman et al. discussed about applying 

different GC algorithms in the same heap space, but their work 

does not involve adjusting the heap partitioning dynamically. The 

study done by Barrett and Zorn [4] is the only known publication 

that studies space boundary adjustment. Nevertheless, this work is 

not aimed for GC efficiency; instead, it is designed to meet the 

resource constraints such as pause time, thus it attacks completely 

different problems than our design. To address the inefficiency of 

space utilization, the Space Tuner utilizes allocation speed to 

adjust the heap partitioning at runtime.   

As exemplified by the LISP2 algorithm [5], compaction 

algorithms are utilized in GC designs to avoid heap 

fragmentations. It achieves this by grouping live objects together 

in the heap and freeing up large contiguous spaces available 

thereafter for future allocation. However, compaction usually 

imposes lengthy pause time. To address this issue, several parallel 

compaction algorithms have been proposed. Flood et al. [6] 

presented a parallel compaction algorithm that runs three passes 

over the heap. First, it determines a new location for each object 

and installs a forwarding pointer, second it fixes all pointers in the 

heap to point to the new locations, and finally, it moves all 

objects. To make this algorithm run in parallel, the heap is split 

into N areas such that N threads are used to compact the heap into 

N/2 chunks of live objects. The main disadvantage of this design 

is that the resulted free space is noncontiguous.  Abuaiadh et al. 

[7] proposed a three-phase parallel compactor that uses a block-

offset array and mark-bit table to record the live objects moving 

distance in blocks. The disadvantage of this algorithm is that it 

wastes about 3% of heap space due to internal fragmentation of 

blocks. Kermany and Petrank [8] proposed the Compressor that 

requires two phases to compact the heap; also Wegiel and Krintz 

[9] designed the Mapping Collector with nearly one phase. Both 

approaches strongly depend on the virtual memory support from 

the underlying operating system. The former leverages the 

memory protection support to copy and adjust pointer references 

on a fault, and the latter releases the physical pages that have no 

live data.  Although these algorithms are efficient in compacting 

normal objects, as far as we know, no algorithm has been 

proposed to parallelize the compaction of large objects. We 

hereby propose a novel parallelization method that reduces the 

normal and large object compaction parallelization problem into a 

dependence tree traversal parallelization problem. 

Concurrent garbage collectors run in parallel to the 

application on a separate thread using part of the overall 

computing resources, while the application continues to run on 

the rest of these resources.  Steele and Dijkstra proposed the first 

concurrent collectors, which are based on mark-sweep algorithms 

[15, 16].  Endo et al proposed a mostly concurrent collector that 

does not use compiler supports, such as write barriers, but uses 

virtual memory primitives [17].  Several groups [18, 19, 20] have 

proposed fully concurrent on-the-fly mark-sweep collectors that 

provide low pause time; but these designs are complex to 

implement due to the requirement of expensive write barriers. 

However, concurrent GC and Stop-The-World (STW) GC designs 

are fundamentally different: they have different design goals, 

evaluation metrics, and algorithms: concurrent GC is designed to 

reduce pause time, whereas STW GC is designed to increase 

throughput.  In this paper, we only focus on STW GC design.   

3. SPACE-A"D-TIME-EFFICIE"T 

GARBAGE COLLECTIO" ALGORITHMS 
In this section, we conceptually demonstrate the space and time 

efficiency problems faced in GC designs.  To address these 

problems, we present the Space Tuner algorithm, which aims to 

improve space efficiency; and the parallel compaction algorithm, 

which aims to improve time efficiency. The implementation 



details of the algorithms proposed in this section will be discussed 

in section 4. 

3.1 The Space Tuner 
As shown in Figure 1 a.), when the heap is partitioned into 

multiple spaces, for instance LOS and non-LOS, a collection is 

triggered when either space is full. In times when a collection is 

triggered by one space while the other space is sparsely filled, the 

heap is not fully utilized. Consequently, it leads to more frequent 

collections and lower application performance. 

The key question here is why one space would get full before 

the other one does. This is because one space allocates objects 

faster than the other. That is, within the same amount of time, a 

higher fraction of one space’s free region is allocated than that of 

the other space. Hence, if both spaces allocate the same fraction of 

its free space within a fixed amount of time, then both spaces 

should be full when garbage collection is triggered. Based on this 

observation, we propose the Space Tuner. The Space Tuner 

dynamically monitors the allocation speed, which is defined as the 

size of objects allocated per unit time (e.g. bytes/seconds), of 

different spaces, and utilizes this information to adjust the heap 

partitioning. Thus, in the ideal case, if the sizes of LOS and non-

LOS are set proportionally to their respective allocation speeds, 

then we can guarantee that both spaces become full at the same 

time. During an application’s execution, both spaces may have 

some live objects surviving after a collection. So the space size 

that matters is the remaining free size in the space after a 

collection. The Space Tuner manages to adjust the heap 

partitioning right after every collection, by allocating the 

remaining free space of the heap to LOS and non-LOS. The sizes 

of the free spaces given to LOS and non-LOS are proportional to 

their allocation speeds.  

Figure 1 illustrates the basic idea of the Space Tuner. In the 

upper half of Figure 1 a.), non-LOS becomes full and triggers a 

garbage collection, but at this time, only 50% of LOS is utilized, 

thus the allocation speed in non-LOS is twice of that in LOS. In 

the upper half of Figure 1 b.), the Space Tuner captures this 

information and assigns more space to non-LOS and shrinks LOS 

correspondingly. Such that in the next allocation period, non-LOS 

would have more space for object allocation.  

 

 
Figure 1:  a.) space inefficiency in GC with separate allocation spaces. b.) the Space Tuner 
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Equation 1 presents the Space Tuner algorithm for LOS size 

computation. In this equation, 
LOSSpaceSize  represents the space 

size of LOS; 
LOSAllocSpeed  represents the allocation speed of 

LOS; 
LOSnonAllocSpeed

−
 represents the allocation speed of non-

LOS; 
LOSFreeSize  represents the freed space size in LOS after the 

collection; 
LOSnonFreeSize

−
represents the freed space size in non-

LOS after the collection; and 
LOSzeSurvivorSi  represents the used 

space size in LOS by the survivors after the collection. This 

equation calculates the new LOS size for next allocation period 

based on allocation speed and other information. Note that the 

computation of allocation speed can be flexible. For example, it 

can be just the total allocated bytes from last collection, or the 

average value of the speeds in last few collections. In our 

experience, it is good enough to use the allocated bytes from last 

collection. To get the new non-LOS size, we can simply subtract 

LOSSpaceSize  from total heap size. 

3.2 The Basic Parallel Compaction Algorithm 
Compacting GCs move live objects towards one end of the heap 

to eliminate fragmentations. To increase GC efficiency, parallel 

compaction algorithms are essential in modern GC designs. The 

fundamental goal of a parallel compaction algorithm is to exploit 

as much parallelism as possible while keeping the synchronization 

cost low.  



As shown in Figure 2, there are two problems in the 

parallelization of object compaction: In non-LOS, there are many 

normal objects and the data dependencies between normal objects 

are fairly low, implying a high degree of parallelism. However, in 

order to parallelize the compaction process in a straightforward 

manner, an atomic operation, which is notorious for its 

inefficiency, is needed for each object movement. Thus the cost of 

parallelization may be well over the performance gain. On the 

other hand, there exist strong data dependencies in LOS such that 

the source object can not be moved to its target location until the 

object originally in the target location has been moved out. 

Especially, when there are only few very large objects, the 

parallelism is seemingly inadequate.  

 
Figure 2: normal and large object compaction 

There are strong data dependencies in LOS such that the second 

object cannot be moved until the first object has been moved out, 

and the third object cannot be moved until the second one has 

been moved out, in this case, no parallelism can be exploited. In 

non-LOS, object movement can be highly parallel since the object 

size is smaller hence less interdependence between individual 

object. And in most cases, there is more free space than live 

objects. However, fine-grain parallel data movement in non-LOS 

imposes high synchronization overhead.  

This observation indicates that we need to set a proper 

parallelization granularity such that it reduces the high 

synchronization overheads caused by fine-grain data movement 

(as in non-LOS) and the false data dependencies caused by 

coarse-grain data movement (as in LOS). Our design is to divide 

the heap into equal-sized blocks thus the parallelization 

granularity is a block. For non-LOS, each block contains multiple 

objects. During collection, each thread obtains a block and moves 

all the objects in the block. When it finishes the current block, it 

fetches another one. In this case, at most one atomic operation is 

required for the movement of multiple objects in a block, thus 

greatly reducing the synchronization overhead. Furthermore, the 

atomic operations can be largely eliminated if a group of blocks 

are assigned to one collector. This is the case in our design shown 

in later text. On the other hand, for LOS, each object contains one 

or more blocks. When one block of a large object can not be 

moved due to data dependency, the other blocks can still be 

moved, thus reducing the false dependency problem. For instance, 

in Figure 3 a.), originally, due to false data dependencies, blocks 

6, 7, and 8 cannot be moved until block 2 has been moved out. 

With equal-sized blocks, dependencies only exists between blocks 

6 and 2, thus the movements of block 7 and 8 can be parallelized. 

The block sizes for LOS and non-LOS can be different, while they 

are equal within either space. This brings flexibilities so that we 

can select right block sizes for either space. For example, the 

block size of LOS can be as small as possible to bring more 

parallelism as long as the synchronization overhead can be 

amortized by the parallelization benefits. 

 
Figure 3: Partitioning of the heap into equal-sized blocks 

a..) By dividing the spaces into equal-sized blocks. Both false 

data dependencies and synchronization costs can be reduced. b.) 

to capture all data dependencies and to facilitate the 

parallelization of data compaction, dependency lists are 

generated for LOS and a dependency tree is generated for non-

LOS. )ote that in non-LOS, one target block can have multiple 

source blocks and one source block can have up to two target 

blocks. In LOS, one target block has only one source block, and 

vice versa. )ote the block sizes for LOS and non-LOS can be 

different, but they are equal within either space. 

Further complications exist in parallelizing the compaction 

process. For non-LOS, races between multiple collectors exist 

when they move objects from a source block to a target block. For 

instance, two collectors may move data from two source blocks 

into a same target block, or one collector may write into a target 

block in which the original objects have not been moved away 

yet. This observation indicates two properties. First, each block 

has two roles, it is a source block when its objects are compacted 

to some other block, and it can be a target block after its original 

data has been moved away. Second, in non-LOS, multiple source 

blocks may compact into one target block, and thus the access to 

this target block should be coordinated or synchronized. In order 

to achieve high performance, the complicated relations between 

the blocks need to be clarified before the compacting threads start. 

To achieve this, we generate dependence trees, such as the one in 

Figure 3 b.), which captures all data dependencies between the 

blocks. For instance, in LOS, block 2 is the source block for block 

1 and it is also the target block for block 6. Thus, block 6 cannot 

be moved to block 2 until block 2 has been moved to block 1. In 

non-LOS, both block 9 and 10 are the target blocks for block 12, 

and block 9 is also the target block for block 10. Thus, block 12 

cannot be moved to block 10 until block 10 has been moved to 

block 9. When compaction starts, the threads traverse the tree to 

obtain a source block and a target block. After the current data 

movement is done, the thread moves down the tree to obtain a 

new source block and set the old source block to be the new target 

block. This process finishes after the thread has reached the leaf 

nodes of the tree. Therefore, we actually reduce the compaction 

parallelization problem into a tree traversal parallelization 

problem. For LOS compaction, the situation is simpler because 

one source block has only one target block, and vice versa. Thus 

the dependency trees degenerate into dependence lists.  

4. IMPLEME"TATIO" DETAILS 
All proposed algorithms have been implemented in Apache 

Harmony, a product-quality open source JAVA Virtual Machine 

[10]. The default garbage collector in Apache Harmony is 



generational, such that for normal object allocation, there is a 

nursery object space (NOS), which is used for new object 

allocation, and a mature object space (MOS), which is used for 

the storage of older objects that have survived one or more 

garbage collections. For better memory management, Apache 

Harmony GC utilizes LOS for large object management, and non-

LOS for normal object management, in this case, non-LOS is 

MOS and NOS.  During allocation, when NOS is full, live objects 

in NOS are copied to MOS, and LOS is not mark-swept. This is 

called minor collection. When either MOS or LOS is full, a major 

collection is triggered to compact in both MOS and LOS. To 

exploit more parallelism, we divided the heap space into equal-

sized blocks, and each block contains a block header for its 

metadata, including block base address, block ceiling address, 

block state, etc. In this study, the block size is set to 4 KB and the 

size threshold for large objects is set to 2 KB.  

4.1 The Space Tuner 
We implemented the space tuner in Apache Harmony GC such 

that when major collections happen, it can adjust the LOS and 

non-LOS sizes based on their respective allocation speeds. The 

detailed algorithm is illustrated in Figure 4.  When GC receives an 

allocation request, it checks whether it is a large object. If it is a 

large object, its size is added to LOS allocation speed; otherwise, 

its size is added to non-LOS allocation speed. Since the time 

elapsed between two collections is the same for both LOS and 

non-LOS, and the Space Tuner cares only the ratio of their 

allocation speeds, so the total allocation size in respective space 

can be utilized as their allocation speed. When garbage collection 

is triggered, the Space Tuner calculates the total survivor size, or 

the total size of all live objects, in both spaces. Next, the free size 

in each space is calculated by subtracting the survivor size from 

the space size, and these numbers are then plugged into Equation 

1 to calculate the new space sizes for LOS and non-LOS.   

 

 

 
Figure 4: space tuner algorithm 

 

There is no need to invoke the Space Tuner when the 

allocation speeds of both spaces have stabilized. Thus, we 

implemented a simple function to check whether space tuning is 

necessary. If so, the Space Tuner is triggered to adjust heap 

partitioning; otherwise, we eliminate the performance overhead of 

the invocation of the Space Tuner. With the Space Tuner, we 

expect that when a garbage collection happens, both LOS and 

non-LOS should be almost fully utilized, and as a consequence, 

the number of garbage collections should be significantly 

decreased compared to that of without the Space Tuner.  

4.2 Parallel non-LOS Compaction 
In order to evaluate the effect of our parallel compaction 

algorithm on non-LOS, we implemented a fully parallel LISP2 

compactor in Apache Harmony. LISP2 compactor is one of the 

best-known GC algorithms thus we demonstrated the 

effectiveness of the proposed algorithms in LISP2. Note that the 

proposed algorithms are generic enough to be implemented in 

other GC designs that involve only two or three phases as well.  

Our design thus consists of following four phases for a collection: 

Phase 1: Live object marking. It traces the heap from root set and 

marks all the live objects; 

Phase 2: Object relocating. It computes the new address of every 

live object, and installs the value into the object header; 

Phase 3: Reference fixing. It adjusts all the reference values in the 

live objects to point to the referenced objects’ new locations; 

Phase 4: Object moving. It copies the live objects to their new 

locations. 

Although we parallelized all four phases, we only discuss the 

parallelization of phase 2 and 4, which are most related to our 

proposed design. The object relocating phase, or phase 2, 



computes the objects’ target locations, without really moving the 

objects. In this phase, the dependency tree is constructed. The tree 

building process is bottom-up, from the leaf nodes to the root. To 

achieve this, source blocks are used for synchronization control 

such that collectors atomically grab source blocks in heap address 

order. That is, a compactor thread grabs a source block and a 

target block.  For each live object in the source block, the 

collector computes its target address in the target block. When the 

target block has not enough space, the collector grabs the next 

target block. Then the collector adds the source block identifier 

into the target block’s source block list, or dependency list. Since 

a source block in one list can be the target block in another list, at 

the end of this phase, the interconnections of the dependency lists 

form a dependency tree, which would be traversed in phase 4. 

When the source block has no more live objects, the collector 

grabs another source block until all the blocks have been visited. 

In this phase, two atomic operations are needed for one block to 

eliminate data races: one for taking the ownership of the source 

block, and the other for taking the ownership of the target block.  

In the object moving phase, or phase 4, the collectors 

traverse the dependency tree to move objects. The traversal 

process is top-down, from the root to the leaf nodes. When a 

collector has a sub-tree whose root block is ready to be filled with 

data, the collector simply traverses the sub-tree in a breadth-first 

order, copying data from child blocks to the parent block. The 

exact copying address of every object is installed in the object 

header as the forwarding pointer in phase 2. Once a root block 

finishes its filling, it is removed from the dependence tree, and its 

original child blocks become new roots. The algorithm continues 

recursively and finishes when reaching the leaf blocks. Any block 

that is the child of other block is not eligible as an initial root 

block. It is only picked up by the collector when all its parent 

blocks are removed from the dependence tree.  

Procedure Parallel_Large_Object_Compaction() 

Begin 

  dep_list = get_next_compact_dep_list(); 

  while(dep_list){ 

   target_block = get_first_block(dep_list); 

   source_block = get_next_block(dep_list); 

   while(source_block != NULL){   

     memmove(target_block, source_block); 

     target_block = source_block;     

     source_block = get_next_block(dep_list); 

    } 

   dep_list = get_next_compact_dep_list(); 
} 

End 

Figure 5: parallel large object compaction 

4.3 Parallel LOS Compaction 
To demonstrate the effect of the parallel LOS compaction 

algorithm, we modify the Apache Harmony GC with separate 

allocation spaces such that the parallel Mark-Compact algorithm 

is utilized for non-LOS management, whereas our parallel LOS 

compaction algorithm is applied for LOS management. Note that 

this design is indeed simpler than the one in non-LOS. This is 

because in LOS there is a one-to-one correspondence between a 

target block and a source block, whereas in non-LOS one source 

block can have multiple target blocks and one target block can 

have multiple source blocks. As a result, there is no dependence 

tree in LOS, but only a number of disjoint dependence lists. Each 

collector can then atomically grab a dependence list and works on 

it independently. Thus, it only requires an atomic operation for 

each dependency list instead of for each block. The pseudo-code 

for this parallel large object compaction is shown in Figure 5. In 

essence, a thread first acquires the ownership of a dependency list 

through an atomic operation. From the list, it gets the first block, 

which is the target block, and the second block, which is the 

source block, and moves the source to the target. When it finishes 

this block movement, the source block now becomes the target 

block and a new source block is obtained by taking the next block 

in the dependency list. This operation repeats until there is no 

more block in the dependency list. Then, the thread obtains 

another dependency list from the task pool.  

5. EXPERIME"TS A"D RESULTS 
We implemented the proposed algorithms in Apache Harmony. 

The evaluation of the design and implementation was done with 

SPECjbb2005 [11] and Dacapo [12] benchmark suites on an 8-

core platform with Intel Core 2 2.8GHz processors. SPECjbb2005 

is a large server benchmark that is suitable for the evaluation non-

LOS garbage collection since it is not large-object-intensive. On 

the other hand, the xalan benchmark in Dacapo is large-object-

intensive, and it can be used for the evaluation of large object 

compaction. We used a 256 MB heap by default.   

5.1 The Space Tuner 
First we evaluated the performance of the Space Tuner. In real 

applications, the object size distribution varies from one 

application to another and from one execution phase to next even 

in one application. For instance, xalan is an XSLT processor for 

transforming XML documents, it is large-object-intensive thus it 

requires a large LOS; on the other hand, specjbb2005 allocates a 

very small number of large objects, and it requires a large non-

LOS. In addition, specjbb2005 actually allocates all the large 

objects at the beginning of its execution and very few large 

objects afterwards. Thus in different phases of its execution, it 

requires different sizes for LOS. In this experiment, for 

specjbb2005 we ran eight warehouses, and for Dacapo we set size 

to large configuration.  

As shown in Table 1, we compared three configurations, 

“tuner” denotes the utilization of our Space Tuner algorithm; “4M 

LOS” denotes the utilization of a static partitioning with 4MB 

LOS; and “40M LOS” denotes the utilization of a static 

partitioning with 40MB LOS. Column “num_collect” denotes the 

number of major collections triggered; and “wasted_frac” denotes 

the fraction of total heap space wasted when collection was 

triggered.  The first observation from Table 1 is that static 

partitioning is highly inefficient. In several cases, including xalan-

4M-LOS, luindex-4M-LOS, and chart-4M-LOS, the programs 

were not able to finish execution due to an out-of-memory 

exception, which was caused by inappropriate heap partitioning 

such that LOS is too small in these cases. With the Space Tuner, 

the space utilization became highly efficient, except in 



specjbb2005, all other benchmarks only required less than 5 major 

collections during their executions. Xalan allocated a lot of large 

objects, it required 1060 major collections even when LOS size 

was 40M, and on average, it wasted 53% of the total heap size 

when collection happened. Nevertheless, with the Space Tuner, 

major collection was only triggered once during its execution. For 

most of the Dacapo benchmarks, a 40M LOS was large enough to 

hold all the large objects, thus only one major collection was 

triggered in the cases of luindex, chart, and bloat.  Note that the 

wasted fraction was high when the Space Tuner was used. Recall 

that the wasted fraction is defined as the fraction of heap space 

wasted when major collection happens. In most cases with the 

Space Tuner, major collection actually happened once. Thus, the 

high wasted fraction was actually caused by the improper heap 

partitioning set previously.  When the Space Tuner detected this 

situation, it immediately adjusted the partitioning such that no 

further major collection was necessary. This is exactly the beauty 

of the Space Tuner.  

 

 

 

Table 1: performance of the Space Tuner 

The rows with a star * denote that the execution is not able to finish due to out-of-memory exception, meaning that the static partitioning 

is not suitable for the program behavior. 

    num_collect wasted_frac   num_collect wasted_frac 

tuner 19 0.12 Tuner 1 0.91 

4M LOS 43 0.3 4M LOS 467 0.74 

specjbb 40M LOS 37 0.16 jython 40M LOS 21 0.43 

tuner 1 0.91 tuner 1 0.96 

4M LOS 71 0.81 4M LOS* 1* 0.96* 

bloat 40M LOS 1 0.47 luindex 40M LOS 1 0.47 

tuner 1 0.91 tuner 2 0.63 

4M LOS* 33* 0.91* 4M LOS 1170 0.86 

chart 40M LOS 1 0.47 pmd 40M LOS 18 0.45 

tuner 4 0.325 tuner 1 0.91 

4M LOS 50 0.69 4M LOS* 44* 0.89* 

hsqldb 40M LOS 6 0.37 xalan 40M LOS 1060 0.53 

 

 

Figure 6 shows the detailed runtime behavior of the Space 

Tuner running with specjbb2005.  The x-axis shows the number 

of major collections and the y-axis shows the fraction of heap size 

wasted when collection happens. We compared the Space Tuner, 

static partitioning with a 4M LOS, static partitioning with a 40M 

LOS, and static partitioning with a 150M LOS. It clearly shows 

that with the Space Tuner, the heap partitioning stabilized after 4 

collections. When further collections happened, the wasted 

fraction was less than 5%.  On the other hand, the one with 150M 

static LOS failed to complete due to an out-of-memory exception, 

caused by insufficient non-LOS. Note that in the case of 4M static 

LOS, the wasted fraction dived from 50% to about 5%. This 

demonstrated the dynamic object allocation behavior of 

Specjbb2005: at the beginning of execution, specjbb2005 

allocated a large amount of large objects, requiring a large LOS; 

later in execution, few large objects were allocated. The results in 

this section demonstrate that the Space Tuner greatly improved 

space utilization, and this optimization also brought time 

efficiency by reducing the number of collections.  
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Figure 6: Runtime behavior of the Space Tuner on 

Specjbb2005 

Besides the LOS/non-LOS partitioning, we were also 

interested in how well the Space Tuner works with a generational 

copying collector. In this case we implemented a Space Tuner for 

NOS and MOS boundary adjustment and the results are shown in 

Figure 7. In this case, NOS was collected by a copying collector, 

and MOS was collected by a compacting collector. The x-axis 

shows the number of warehouses used in the experiment, the y-



axis shows the normalized score (a higher score implies higher 

performance), and we compared a 8 MB, a 16 MB, a 32 MB, a 64 

MB, and an adaptive NOS size. Figure 7 clearly demonstrates that 

NOS size adaptation with the Space Tuner can achieve much 

better performance than all of other fixed NOS size settings. 

Specifically, the performance is almost 5x better than that of the 

8MB NOS.  This result demonstrates that the Space Tuner 

algorithm not only works for the space adjustment between LOS 

and non-LOS, but it can also be applied to any case that involves 

the partitioning of a space into multiple spaces.  
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Figure 7: SPECjbb2005 performance with different "OS sizes 

5.2 The non-LOS Parallel Compaction 

In order to evaluate the effect of our parallel compaction 

algorithm on non-LOS, we implemented a fully parallel LISP2 

compactor in Apache Harmony. In this experiment we ran 

specjbb2005 on an Intel 8-core machine. We first checked the 

scalability of this algorithm. We examined the time spent in 

different phases as shown in Figure 8. The parallel compactor ran 

with 1, 2, 4, and 8 collectors. It clearly demonstrates that all four 

phases in our parallel LISP2 design achieved significant 

speedups. On average, the speedups of the four phases were 1.4x, 

2.3x, and 3.7x respectively with 2, 4, 8 collectors. This result 

indicates that all four phases of our design are scalable. In other 

words, no individual phase would become the bottleneck of 

overall performance.   
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Figure 8: Scalability of parallel non-LOS compaction 

Figure 9 shows the impact of the parallel compaction 

algorithm on the overall GC performance. The metric we use here 

is GC pause time in units of milliseconds, which is the y-axis of 

Figure 9. The results indicate that the overall normalized pause 

time had been reduced steadily from 100% to 70%, 43% and 27% 

as 1 thread, 2 threads, 4 threads, and 8 threads were used, 

respectively.  
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Figure 9: the impact of the parallel compaction algorithm on 

the overall GC performance 

5.3 The LOS Parallel Compaction 
To demonstrate the effect of the parallel LOS compaction 

algorithm, we modified the Apache Harmony GC with separate 

allocation spaces to incorporate this algorithm for LOS 

compaction. We focused on the xalan benchmark because it is 

large-object-intensive. Figure 10 shows the scalability of this 

algorithm on xalan, pmd, and bloat. Besides xalan, the other two 

benchmarks are not large-object-intensive. We included them to 

demonstrate that the algorithm is still scalable even though the 

number of large objects is limited. The metric we use here is the 

normalized LOS compaction time.   On average, the speedups of 

the parallel large object compaction were 1.56x, 2.10x, and 2.64x 

respectively with 2, 3, 4 collectors.  
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Figure 10: Scalability of parallel LOS compaction 

Then we studied how this parallel LOS compaction 

algorithm would impact the performance of the overall program 

execution. To get this data, we ran the respective benchmarks with 

1, 2, 3, and 4 large object compaction threads and measured the 

total execution time. The results are organized in Figure 11. It 

shows that when we ran xalan with 4 parallel compaction threads, 

a performance gain of about 3% was achieved. Although this 

seems to be a small performance gain, but since garbage 

collection only takes less than 10% of the total execution time, 

this result is actually a great improvement on GC performance. 

Note that other benchmarks, such as pmd, hsqldb, and bloat did 

not show significant performance gain or any trend of 

performance improvement. This is because these benchmarks are 

not large-object-intensive, thus optimizations on large object 

compaction can induce little impact on the overall performance.   
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Figure 11: Impact of parallel LOS compaction on overall 

execution time 

5.4 The "eed for Load Balance 
The proposed parallel compaction algorithms would achieve high 

performance only if the workload for each thread is balanced. In 

our study on LOS load balance with xalan, we found that the max 

length of a dependency list was 48, while the majority (78%) of 

dependency lists contained only one moving task (only one source 

block and one target block). This result has two implications: 

First, without optimization, the dependency lists were highly 

imbalanced such that there were several long lists and a large 

amount of short lists, and the long lists became the performance 

bottleneck since they could only be executed sequentially. 

Second, it required an atomic operation to fetch a dependency list, 

when the list contained only one block, then the performance gain 

could be very low. Actually, we found out that this overhead was 

38%, that is, if the task takes 100 cycles to move a block, then the 

synchronization overhead to fetch this task is 38 cycles on 

average.  In another study on non-LOS load balance with 

SPECjbb2005 benchmark, we found out that the maximum depth 

of a dependence tree was 353 while the average depth was only 

22.3. Also, the maximum number of child nodes for each node 

was 20 while the average was 1.5.  This implies the possibility of 

the existence of some huge trees that contained a large number of 

nodes, along with some small trees that contained only few nodes. 

To solve these problems, we have implemented a heuristics which 

counts the total number of dependence lists and divide them into 

N (number of threads) chunks and then collapse each chunk into a 

dependence list or tree. This heuristic has been utilized in the 

experiments shown in the previous sections. And as indicated by 

Figure 7 and 10, the results have demonstrated good speedups.   

6. CO"CLUSIO" 
As multithreaded server applications prevail, Garbage collection 

(GC) technology has become essential in managed runtime 

systems. Space and time efficiency are the two most important 

design goals in garbage collector design. In this paper, we have 

proposed a complete algorithmic framework to improve both the 

space and time efficiency in parallel compacting GC design. This 

framework includes the Space Tuner, which dynamically adjusts 

the heap partitioning to maximize space utilization; the parallel 

compaction algorithm, which aims to fully parallelize the 

compaction process in both the large object space (LOS) and non-

large object space (non-LOS) in order to achieve time efficiency.  

We have evaluated the effectiveness of these mechanisms. 

The results show that the Space Tuner is able to largely improve 

the heap space utilization; this also leads to a certain performance 

improvement because the number of garbage collections has also 

been reduced.  Further, we have demonstrated that our parallel 

compaction algorithm was scalable in both non-LOS and LOS. To 

test its effectiveness in non-LOS, we utilized this parallel 

compaction algorithm to produce a novel parallel version of the 

conventional LISP2 compactor and the results are encouraging. 

This algorithm offers an elegant and new solution to the well-

known problem of parallel compaction in large object space.  

Although we have proven our algorithms on a parallel 

compacting GC from Apache Harmony, these algorithms are by 

nature generic and have much broader applications. For the Space 

Tuner, we have demonstrated their effectiveness for both 

NOS/MOS boundary adjustment and for LOS/non-LOS boundary 

adjustment. It can indeed be extended to any design with multiple 

allocation spaces.   For the parallel compaction algorithms, we 

have demonstrated their effectiveness in both LOS and non-LOS 

design. These algorithms can be extended to any design that 

involves object movements, such as those GC designs with two or 

three phases. 

Our ongoing work is to apply the techniques developed here 

to more GCs, and compare them with other parallel GC 

algorithms. One of the interesting areas for our next step is to 

combine the techniques with virtual memory support in GC 

design. 
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