
Space-and-Time Efficient Garbage Collectors for Parallel

Systems

Shaoshan Liu
University of California, Irvine

shaoshal@uci.edu

Jean-Luc Gaudiot

University of California, Irvine

gaudiot@uci.edu

Ligang Wang
Intel China Research Center

ligang.wang@intel.com

Xiao-Feng Li
Intel China Research Center

xiao.feng.li@intel.com

ABSTRACT
As multithreaded server applications and runtime systems prevail,

garbage collection is becoming an essential feature to support

high performance systems. The fundamental issue of garbage

collector (GC) design is to maximize the recycled space with

minimal time overhead. This paper proposes two innovative

solutions: one to improve space efficiency, and the other to

improve time efficiency. To achieve space efficiency, we propose

the Space Tuner that utilizes the novel concept of allocation speed

to reduce wasted space. Conventional static space partitioning

techniques often lead to inefficient space utilization. The Space

Tuner adjusts the heap partitioning dynamically such that when a

collection is triggered, all space partitions are fully filled. To

achieve time efficiency, we propose a novel parallelization

method that reduces the compacting GC parallelization problem

into a tree traversal parallelization problem. This method can be

applied for both normal and large object compaction. Object

compaction is hard to parallelize due to strong data dependencies

such that the source object can not be moved to its target location

until the object originally in the target location has been moved

out. Our proposed algorithm overcomes the difficulties by

dividing the heap into equal-sized blocks and parallelizing the

movement of the independent blocks. It is noteworthy that these

proposed algorithms are generic such that they can be utilized in

different GC designs.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management – garbage

collection.

General Terms
Algorithms, Management, Performance.

Keywords
Garbage collection, Java Virtual Machine.

1. I"TRODUCTIO"
Garbage collection technology is widely used in managed runtime

systems such as Java virtual machine (JVM) [10] and Common

Language Runtime (CLR) [14]. Multithreaded applications with

large heaps running on modern servers present new challenges as

far as designing suitable garbage collectors is concerned.

Particularly, server applications are required to operate

continuously and remain highly responsive to frequent client

requests. Thus the garbage collector should impose minimum

pause time while providing maximum throughput. On the other

hand, increasingly parallel multicore systems will be used even in

low-end devices that impose real-time constraints. When garbage

collection is used in these systems, its impact on the overall

performance needs to be minimized so as to meet the real-time

constraints. Meanwhile, garbage collection needs to be effective

in recycling space, especially when the available memory space is

limited. Therefore, to meet the needs of modern and future

multithreaded applications, it is essential to design garbage

collectors that provide both space and time efficiency.

There are two main aspects in garbage collector (GC) design,

namely, the partitioning of heap space and the algorithms for

garbage collection. As shown in [2], for better memory

management, a modern high performance GC usually manages

large and normal objects separately such that the heap is divided

into large object space (LOS) and non-large object space (non-

LOS). However, the object size distribution varies from one

application to another and from one execution phase to the next

even in one application, thus it is impossible to predefine a proper

heap partitioning for LOS and non-LOS statically. The current

known GCs with separate allocation spaces mostly suffer from the

problem that they don’t fit well with the dynamic variations of

object size distribution at runtime. This problem leads to

imbalanced space utilization and impacts the overall GC

performance negatively. Besides LOS/non-LOS space

partitioning, the problem of imbalanced space utilization indeed

exists in any GCs that have multiple spaces. For example, a

generational GC has typically a young object space and a mature

object space. The space partitioning for both spaces also needs a

careful design to achieve maximal GC efficiency.

For garbage collection algorithms, conventional mark-sweep

and reference counting collectors are susceptible to fragmentation

due to the lack of object movements. To address this problem,

copying or compacting GCs are introduced. Compaction

algorithms are now widely utilized in GC designs [5, 7, 8, 9].

Compaction eliminates fragmentation by grouping live objects

together in the heap and freeing up large contiguous spaces for

future allocation. As multi-core architectures prevail, parallel

compaction algorithms have been designed to achieve time

efficiency. However, none of the proposed parallel compaction

algorithms can be used for large object compaction. Large object

compaction is hard to parallelize due to strong data dependencies

such that the source object can not be moved to its target location

until the object originally in the target location has been moved

out. Especially, when there are only few very large objects, the

parallelism is seemingly inadequate.

The fundamental issue of garbage collector (GC) design is to

maximize the recycled space with minimal time and memory

overhead. In this paper, we propose two innovative solutions, one

to improve space efficiency, and the other to improve time

efficiency. To improve space utilization, we introduce the Space

Tuner, which adjusts the heap partitioning between the spaces

dynamically according to the application’s runtime behavior, such

that when collection happens, both spaces are fully utilized. To

improve time efficiency, we propose a parallelization algorithm

that reduces the compaction parallelization problems into a tree

traversal parallelization problem, and apply it to both normal and

large object compaction. With these, we complete the algorithmic

framework for the space and time efficiency in parallel

compacting garbage collectors. Note that although we

demonstrate our algorithms on a parallel compacting GC based on

the LISP2 design [5, 10], these algorithms are indeed generic and

have much broader applications: The Space Tuner can be utilized

in any design with multiple allocation spaces, and the parallel

compacting algorithms can be applied in any design that involves

object movements.

In this paper we present the design details of the proposed

algorithms and evaluate their efficiencies. These algorithms are

implemented in Apache Harmony, a product-quality open source

JAVA SE implementation [10]. This paper is organized as

follows. Section 2 discusses the related work. Section 3

introduces the basic algorithm designs of the Space Tuner and the

parallel compaction mechanisms. Section 4 presents the

implementation details of these designs in Apache Harmony.

Section 5 evaluates and discusses the design with representative

benchmarks. And at the end, section 6 summarizes the work.

2. RELATED WORK
For better memory management, Caudill and Wirfs-Brock first

proposed to use separate spaces to manage objects of different

sizes, large object space (LOS) for large objects and non-large

object space (non-LOS) for normal objects [1]. Hicks et al. have

done a thorough study on large object spaces [2]. The results of

this study indicate three problems for LOS designs. First, LOS

collection is hard to parallelize. Second, LOS shares the same

heap with non-LOS, thus it is hard to achieve full utilization of

the heap space. Third, LOS and non-LOS collections are done in

different phases, which may affect the scalability of parallel

garbage collection. In [3], Soman et al. discussed about applying

different GC algorithms in the same heap space, but their work

does not involve adjusting the heap partitioning dynamically. The

study done by Barrett and Zorn [4] is the only known publication

that studies space boundary adjustment. Nevertheless, this work is

not aimed for GC efficiency; instead, it is designed to meet the

resource constraints such as pause time, thus it attacks completely

different problems than our design. To address the inefficiency of

space utilization, the Space Tuner utilizes allocation speed to

adjust the heap partitioning at runtime.

As exemplified by the LISP2 algorithm [5], compaction

algorithms are utilized in GC designs to avoid heap

fragmentations. It achieves this by grouping live objects together

in the heap and freeing up large contiguous spaces available

thereafter for future allocation. However, compaction usually

imposes lengthy pause time. To address this issue, several parallel

compaction algorithms have been proposed. Flood et al. [6]

presented a parallel compaction algorithm that runs three passes

over the heap. First, it determines a new location for each object

and installs a forwarding pointer, second it fixes all pointers in the

heap to point to the new locations, and finally, it moves all

objects. To make this algorithm run in parallel, the heap is split

into N areas such that N threads are used to compact the heap into

N/2 chunks of live objects. The main disadvantage of this design

is that the resulted free space is noncontiguous. Abuaiadh et al.

[7] proposed a three-phase parallel compactor that uses a block-

offset array and mark-bit table to record the live objects moving

distance in blocks. The disadvantage of this algorithm is that it

wastes about 3% of heap space due to internal fragmentation of

blocks. Kermany and Petrank [8] proposed the Compressor that

requires two phases to compact the heap; also Wegiel and Krintz

[9] designed the Mapping Collector with nearly one phase. Both

approaches strongly depend on the virtual memory support from

the underlying operating system. The former leverages the

memory protection support to copy and adjust pointer references

on a fault, and the latter releases the physical pages that have no

live data. Although these algorithms are efficient in compacting

normal objects, as far as we know, no algorithm has been

proposed to parallelize the compaction of large objects. We

hereby propose a novel parallelization method that reduces the

normal and large object compaction parallelization problem into a

dependence tree traversal parallelization problem.

Concurrent garbage collectors run in parallel to the

application on a separate thread using part of the overall

computing resources, while the application continues to run on

the rest of these resources. Steele and Dijkstra proposed the first

concurrent collectors, which are based on mark-sweep algorithms

[15, 16]. Endo et al proposed a mostly concurrent collector that

does not use compiler supports, such as write barriers, but uses

virtual memory primitives [17]. Several groups [18, 19, 20] have

proposed fully concurrent on-the-fly mark-sweep collectors that

provide low pause time; but these designs are complex to

implement due to the requirement of expensive write barriers.

However, concurrent GC and Stop-The-World (STW) GC designs

are fundamentally different: they have different design goals,

evaluation metrics, and algorithms: concurrent GC is designed to

reduce pause time, whereas STW GC is designed to increase

throughput. In this paper, we only focus on STW GC design.

3. SPACE-A"D-TIME-EFFICIE"T

GARBAGE COLLECTIO" ALGORITHMS
In this section, we conceptually demonstrate the space and time

efficiency problems faced in GC designs. To address these

problems, we present the Space Tuner algorithm, which aims to

improve space efficiency; and the parallel compaction algorithm,

which aims to improve time efficiency. The implementation

details of the algorithms proposed in this section will be discussed

in section 4.

3.1 The Space Tuner
As shown in Figure 1 a.), when the heap is partitioned into

multiple spaces, for instance LOS and non-LOS, a collection is

triggered when either space is full. In times when a collection is

triggered by one space while the other space is sparsely filled, the

heap is not fully utilized. Consequently, it leads to more frequent

collections and lower application performance.

The key question here is why one space would get full before

the other one does. This is because one space allocates objects

faster than the other. That is, within the same amount of time, a

higher fraction of one space’s free region is allocated than that of

the other space. Hence, if both spaces allocate the same fraction of

its free space within a fixed amount of time, then both spaces

should be full when garbage collection is triggered. Based on this

observation, we propose the Space Tuner. The Space Tuner

dynamically monitors the allocation speed, which is defined as the

size of objects allocated per unit time (e.g. bytes/seconds), of

different spaces, and utilizes this information to adjust the heap

partitioning. Thus, in the ideal case, if the sizes of LOS and non-

LOS are set proportionally to their respective allocation speeds,

then we can guarantee that both spaces become full at the same

time. During an application’s execution, both spaces may have

some live objects surviving after a collection. So the space size

that matters is the remaining free size in the space after a

collection. The Space Tuner manages to adjust the heap

partitioning right after every collection, by allocating the

remaining free space of the heap to LOS and non-LOS. The sizes

of the free spaces given to LOS and non-LOS are proportional to

their allocation speeds.

Figure 1 illustrates the basic idea of the Space Tuner. In the

upper half of Figure 1 a.), non-LOS becomes full and triggers a

garbage collection, but at this time, only 50% of LOS is utilized,

thus the allocation speed in non-LOS is twice of that in LOS. In

the upper half of Figure 1 b.), the Space Tuner captures this

information and assigns more space to non-LOS and shrinks LOS

correspondingly. Such that in the next allocation period, non-LOS

would have more space for object allocation.

Figure 1: a.) space inefficiency in GC with separate allocation spaces. b.) the Space Tuner

(1)

*()
()

LOS
LOS LOS non LOS LOS

LOS non LOS

AllocSpeed
SpaceSize FreeSize FreeSize SurvivorSize

AllocSpeed AllocSpeed
−

−

= + +

+

Equation 1 presents the Space Tuner algorithm for LOS size

computation. In this equation,
LOSSpaceSize represents the space

size of LOS;
LOSAllocSpeed represents the allocation speed of

LOS;
LOSnonAllocSpeed

−
 represents the allocation speed of non-

LOS;
LOSFreeSize represents the freed space size in LOS after the

collection;
LOSnonFreeSize

−
represents the freed space size in non-

LOS after the collection; and
LOSzeSurvivorSi represents the used

space size in LOS by the survivors after the collection. This

equation calculates the new LOS size for next allocation period

based on allocation speed and other information. Note that the

computation of allocation speed can be flexible. For example, it

can be just the total allocated bytes from last collection, or the

average value of the speeds in last few collections. In our

experience, it is good enough to use the allocated bytes from last

collection. To get the new non-LOS size, we can simply subtract

LOSSpaceSize from total heap size.

3.2 The Basic Parallel Compaction Algorithm
Compacting GCs move live objects towards one end of the heap

to eliminate fragmentations. To increase GC efficiency, parallel

compaction algorithms are essential in modern GC designs. The

fundamental goal of a parallel compaction algorithm is to exploit

as much parallelism as possible while keeping the synchronization

cost low.

As shown in Figure 2, there are two problems in the

parallelization of object compaction: In non-LOS, there are many

normal objects and the data dependencies between normal objects

are fairly low, implying a high degree of parallelism. However, in

order to parallelize the compaction process in a straightforward

manner, an atomic operation, which is notorious for its

inefficiency, is needed for each object movement. Thus the cost of

parallelization may be well over the performance gain. On the

other hand, there exist strong data dependencies in LOS such that

the source object can not be moved to its target location until the

object originally in the target location has been moved out.

Especially, when there are only few very large objects, the

parallelism is seemingly inadequate.

Figure 2: normal and large object compaction

There are strong data dependencies in LOS such that the second

object cannot be moved until the first object has been moved out,

and the third object cannot be moved until the second one has

been moved out, in this case, no parallelism can be exploited. In

non-LOS, object movement can be highly parallel since the object

size is smaller hence less interdependence between individual

object. And in most cases, there is more free space than live

objects. However, fine-grain parallel data movement in non-LOS

imposes high synchronization overhead.

This observation indicates that we need to set a proper

parallelization granularity such that it reduces the high

synchronization overheads caused by fine-grain data movement

(as in non-LOS) and the false data dependencies caused by

coarse-grain data movement (as in LOS). Our design is to divide

the heap into equal-sized blocks thus the parallelization

granularity is a block. For non-LOS, each block contains multiple

objects. During collection, each thread obtains a block and moves

all the objects in the block. When it finishes the current block, it

fetches another one. In this case, at most one atomic operation is

required for the movement of multiple objects in a block, thus

greatly reducing the synchronization overhead. Furthermore, the

atomic operations can be largely eliminated if a group of blocks

are assigned to one collector. This is the case in our design shown

in later text. On the other hand, for LOS, each object contains one

or more blocks. When one block of a large object can not be

moved due to data dependency, the other blocks can still be

moved, thus reducing the false dependency problem. For instance,

in Figure 3 a.), originally, due to false data dependencies, blocks

6, 7, and 8 cannot be moved until block 2 has been moved out.

With equal-sized blocks, dependencies only exists between blocks

6 and 2, thus the movements of block 7 and 8 can be parallelized.

The block sizes for LOS and non-LOS can be different, while they

are equal within either space. This brings flexibilities so that we

can select right block sizes for either space. For example, the

block size of LOS can be as small as possible to bring more

parallelism as long as the synchronization overhead can be

amortized by the parallelization benefits.

Figure 3: Partitioning of the heap into equal-sized blocks

a..) By dividing the spaces into equal-sized blocks. Both false

data dependencies and synchronization costs can be reduced. b.)

to capture all data dependencies and to facilitate the

parallelization of data compaction, dependency lists are

generated for LOS and a dependency tree is generated for non-

LOS.)ote that in non-LOS, one target block can have multiple

source blocks and one source block can have up to two target

blocks. In LOS, one target block has only one source block, and

vice versa.)ote the block sizes for LOS and non-LOS can be

different, but they are equal within either space.

Further complications exist in parallelizing the compaction

process. For non-LOS, races between multiple collectors exist

when they move objects from a source block to a target block. For

instance, two collectors may move data from two source blocks

into a same target block, or one collector may write into a target

block in which the original objects have not been moved away

yet. This observation indicates two properties. First, each block

has two roles, it is a source block when its objects are compacted

to some other block, and it can be a target block after its original

data has been moved away. Second, in non-LOS, multiple source

blocks may compact into one target block, and thus the access to

this target block should be coordinated or synchronized. In order

to achieve high performance, the complicated relations between

the blocks need to be clarified before the compacting threads start.

To achieve this, we generate dependence trees, such as the one in

Figure 3 b.), which captures all data dependencies between the

blocks. For instance, in LOS, block 2 is the source block for block

1 and it is also the target block for block 6. Thus, block 6 cannot

be moved to block 2 until block 2 has been moved to block 1. In

non-LOS, both block 9 and 10 are the target blocks for block 12,

and block 9 is also the target block for block 10. Thus, block 12

cannot be moved to block 10 until block 10 has been moved to

block 9. When compaction starts, the threads traverse the tree to

obtain a source block and a target block. After the current data

movement is done, the thread moves down the tree to obtain a

new source block and set the old source block to be the new target

block. This process finishes after the thread has reached the leaf

nodes of the tree. Therefore, we actually reduce the compaction

parallelization problem into a tree traversal parallelization

problem. For LOS compaction, the situation is simpler because

one source block has only one target block, and vice versa. Thus

the dependency trees degenerate into dependence lists.

4. IMPLEME"TATIO" DETAILS
All proposed algorithms have been implemented in Apache

Harmony, a product-quality open source JAVA Virtual Machine

[10]. The default garbage collector in Apache Harmony is

generational, such that for normal object allocation, there is a

nursery object space (NOS), which is used for new object

allocation, and a mature object space (MOS), which is used for

the storage of older objects that have survived one or more

garbage collections. For better memory management, Apache

Harmony GC utilizes LOS for large object management, and non-

LOS for normal object management, in this case, non-LOS is

MOS and NOS. During allocation, when NOS is full, live objects

in NOS are copied to MOS, and LOS is not mark-swept. This is

called minor collection. When either MOS or LOS is full, a major

collection is triggered to compact in both MOS and LOS. To

exploit more parallelism, we divided the heap space into equal-

sized blocks, and each block contains a block header for its

metadata, including block base address, block ceiling address,

block state, etc. In this study, the block size is set to 4 KB and the

size threshold for large objects is set to 2 KB.

4.1 The Space Tuner
We implemented the space tuner in Apache Harmony GC such

that when major collections happen, it can adjust the LOS and

non-LOS sizes based on their respective allocation speeds. The

detailed algorithm is illustrated in Figure 4. When GC receives an

allocation request, it checks whether it is a large object. If it is a

large object, its size is added to LOS allocation speed; otherwise,

its size is added to non-LOS allocation speed. Since the time

elapsed between two collections is the same for both LOS and

non-LOS, and the Space Tuner cares only the ratio of their

allocation speeds, so the total allocation size in respective space

can be utilized as their allocation speed. When garbage collection

is triggered, the Space Tuner calculates the total survivor size, or

the total size of all live objects, in both spaces. Next, the free size

in each space is calculated by subtracting the survivor size from

the space size, and these numbers are then plugged into Equation

1 to calculate the new space sizes for LOS and non-LOS.

Figure 4: space tuner algorithm

There is no need to invoke the Space Tuner when the

allocation speeds of both spaces have stabilized. Thus, we

implemented a simple function to check whether space tuning is

necessary. If so, the Space Tuner is triggered to adjust heap

partitioning; otherwise, we eliminate the performance overhead of

the invocation of the Space Tuner. With the Space Tuner, we

expect that when a garbage collection happens, both LOS and

non-LOS should be almost fully utilized, and as a consequence,

the number of garbage collections should be significantly

decreased compared to that of without the Space Tuner.

4.2 Parallel non-LOS Compaction
In order to evaluate the effect of our parallel compaction

algorithm on non-LOS, we implemented a fully parallel LISP2

compactor in Apache Harmony. LISP2 compactor is one of the

best-known GC algorithms thus we demonstrated the

effectiveness of the proposed algorithms in LISP2. Note that the

proposed algorithms are generic enough to be implemented in

other GC designs that involve only two or three phases as well.

Our design thus consists of following four phases for a collection:

Phase 1: Live object marking. It traces the heap from root set and

marks all the live objects;

Phase 2: Object relocating. It computes the new address of every

live object, and installs the value into the object header;

Phase 3: Reference fixing. It adjusts all the reference values in the

live objects to point to the referenced objects’ new locations;

Phase 4: Object moving. It copies the live objects to their new

locations.

Although we parallelized all four phases, we only discuss the

parallelization of phase 2 and 4, which are most related to our

proposed design. The object relocating phase, or phase 2,

computes the objects’ target locations, without really moving the

objects. In this phase, the dependency tree is constructed. The tree

building process is bottom-up, from the leaf nodes to the root. To

achieve this, source blocks are used for synchronization control

such that collectors atomically grab source blocks in heap address

order. That is, a compactor thread grabs a source block and a

target block. For each live object in the source block, the

collector computes its target address in the target block. When the

target block has not enough space, the collector grabs the next

target block. Then the collector adds the source block identifier

into the target block’s source block list, or dependency list. Since

a source block in one list can be the target block in another list, at

the end of this phase, the interconnections of the dependency lists

form a dependency tree, which would be traversed in phase 4.

When the source block has no more live objects, the collector

grabs another source block until all the blocks have been visited.

In this phase, two atomic operations are needed for one block to

eliminate data races: one for taking the ownership of the source

block, and the other for taking the ownership of the target block.

In the object moving phase, or phase 4, the collectors

traverse the dependency tree to move objects. The traversal

process is top-down, from the root to the leaf nodes. When a

collector has a sub-tree whose root block is ready to be filled with

data, the collector simply traverses the sub-tree in a breadth-first

order, copying data from child blocks to the parent block. The

exact copying address of every object is installed in the object

header as the forwarding pointer in phase 2. Once a root block

finishes its filling, it is removed from the dependence tree, and its

original child blocks become new roots. The algorithm continues

recursively and finishes when reaching the leaf blocks. Any block

that is the child of other block is not eligible as an initial root

block. It is only picked up by the collector when all its parent

blocks are removed from the dependence tree.

Procedure Parallel_Large_Object_Compaction()

Begin

 dep_list = get_next_compact_dep_list();

 while(dep_list){

 target_block = get_first_block(dep_list);

 source_block = get_next_block(dep_list);

 while(source_block != NULL){

 memmove(target_block, source_block);

 target_block = source_block;

 source_block = get_next_block(dep_list);

 }

 dep_list = get_next_compact_dep_list();
}

End

Figure 5: parallel large object compaction

4.3 Parallel LOS Compaction
To demonstrate the effect of the parallel LOS compaction

algorithm, we modify the Apache Harmony GC with separate

allocation spaces such that the parallel Mark-Compact algorithm

is utilized for non-LOS management, whereas our parallel LOS

compaction algorithm is applied for LOS management. Note that

this design is indeed simpler than the one in non-LOS. This is

because in LOS there is a one-to-one correspondence between a

target block and a source block, whereas in non-LOS one source

block can have multiple target blocks and one target block can

have multiple source blocks. As a result, there is no dependence

tree in LOS, but only a number of disjoint dependence lists. Each

collector can then atomically grab a dependence list and works on

it independently. Thus, it only requires an atomic operation for

each dependency list instead of for each block. The pseudo-code

for this parallel large object compaction is shown in Figure 5. In

essence, a thread first acquires the ownership of a dependency list

through an atomic operation. From the list, it gets the first block,

which is the target block, and the second block, which is the

source block, and moves the source to the target. When it finishes

this block movement, the source block now becomes the target

block and a new source block is obtained by taking the next block

in the dependency list. This operation repeats until there is no

more block in the dependency list. Then, the thread obtains

another dependency list from the task pool.

5. EXPERIME"TS A"D RESULTS
We implemented the proposed algorithms in Apache Harmony.

The evaluation of the design and implementation was done with

SPECjbb2005 [11] and Dacapo [12] benchmark suites on an 8-

core platform with Intel Core 2 2.8GHz processors. SPECjbb2005

is a large server benchmark that is suitable for the evaluation non-

LOS garbage collection since it is not large-object-intensive. On

the other hand, the xalan benchmark in Dacapo is large-object-

intensive, and it can be used for the evaluation of large object

compaction. We used a 256 MB heap by default.

5.1 The Space Tuner
First we evaluated the performance of the Space Tuner. In real

applications, the object size distribution varies from one

application to another and from one execution phase to next even

in one application. For instance, xalan is an XSLT processor for

transforming XML documents, it is large-object-intensive thus it

requires a large LOS; on the other hand, specjbb2005 allocates a

very small number of large objects, and it requires a large non-

LOS. In addition, specjbb2005 actually allocates all the large

objects at the beginning of its execution and very few large

objects afterwards. Thus in different phases of its execution, it

requires different sizes for LOS. In this experiment, for

specjbb2005 we ran eight warehouses, and for Dacapo we set size

to large configuration.

As shown in Table 1, we compared three configurations,

“tuner” denotes the utilization of our Space Tuner algorithm; “4M

LOS” denotes the utilization of a static partitioning with 4MB

LOS; and “40M LOS” denotes the utilization of a static

partitioning with 40MB LOS. Column “num_collect” denotes the

number of major collections triggered; and “wasted_frac” denotes

the fraction of total heap space wasted when collection was

triggered. The first observation from Table 1 is that static

partitioning is highly inefficient. In several cases, including xalan-

4M-LOS, luindex-4M-LOS, and chart-4M-LOS, the programs

were not able to finish execution due to an out-of-memory

exception, which was caused by inappropriate heap partitioning

such that LOS is too small in these cases. With the Space Tuner,

the space utilization became highly efficient, except in

specjbb2005, all other benchmarks only required less than 5 major

collections during their executions. Xalan allocated a lot of large

objects, it required 1060 major collections even when LOS size

was 40M, and on average, it wasted 53% of the total heap size

when collection happened. Nevertheless, with the Space Tuner,

major collection was only triggered once during its execution. For

most of the Dacapo benchmarks, a 40M LOS was large enough to

hold all the large objects, thus only one major collection was

triggered in the cases of luindex, chart, and bloat. Note that the

wasted fraction was high when the Space Tuner was used. Recall

that the wasted fraction is defined as the fraction of heap space

wasted when major collection happens. In most cases with the

Space Tuner, major collection actually happened once. Thus, the

high wasted fraction was actually caused by the improper heap

partitioning set previously. When the Space Tuner detected this

situation, it immediately adjusted the partitioning such that no

further major collection was necessary. This is exactly the beauty

of the Space Tuner.

Table 1: performance of the Space Tuner

The rows with a star * denote that the execution is not able to finish due to out-of-memory exception, meaning that the static partitioning

is not suitable for the program behavior.

 num_collect wasted_frac num_collect wasted_frac

tuner 19 0.12 Tuner 1 0.91

4M LOS 43 0.3 4M LOS 467 0.74

specjbb 40M LOS 37 0.16 jython 40M LOS 21 0.43

tuner 1 0.91 tuner 1 0.96

4M LOS 71 0.81 4M LOS* 1* 0.96*

bloat 40M LOS 1 0.47 luindex 40M LOS 1 0.47

tuner 1 0.91 tuner 2 0.63

4M LOS* 33* 0.91* 4M LOS 1170 0.86

chart 40M LOS 1 0.47 pmd 40M LOS 18 0.45

tuner 4 0.325 tuner 1 0.91

4M LOS 50 0.69 4M LOS* 44* 0.89*

hsqldb 40M LOS 6 0.37 xalan 40M LOS 1060 0.53

Figure 6 shows the detailed runtime behavior of the Space

Tuner running with specjbb2005. The x-axis shows the number

of major collections and the y-axis shows the fraction of heap size

wasted when collection happens. We compared the Space Tuner,

static partitioning with a 4M LOS, static partitioning with a 40M

LOS, and static partitioning with a 150M LOS. It clearly shows

that with the Space Tuner, the heap partitioning stabilized after 4

collections. When further collections happened, the wasted

fraction was less than 5%. On the other hand, the one with 150M

static LOS failed to complete due to an out-of-memory exception,

caused by insufficient non-LOS. Note that in the case of 4M static

LOS, the wasted fraction dived from 50% to about 5%. This

demonstrated the dynamic object allocation behavior of

Specjbb2005: at the beginning of execution, specjbb2005

allocated a large amount of large objects, requiring a large LOS;

later in execution, few large objects were allocated. The results in

this section demonstrate that the Space Tuner greatly improved

space utilization, and this optimization also brought time

efficiency by reducing the number of collections.

Runtime Behavior of space tuner

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

number of collections

fr
a
c
ti
o
n
 o
f
w
a
s
te
d
 s
p
a
c
e the Space

Tuner
static LOS

4M

static LOS

40M
static LOS

150M*

Figure 6: Runtime behavior of the Space Tuner on

Specjbb2005

Besides the LOS/non-LOS partitioning, we were also

interested in how well the Space Tuner works with a generational

copying collector. In this case we implemented a Space Tuner for

NOS and MOS boundary adjustment and the results are shown in

Figure 7. In this case, NOS was collected by a copying collector,

and MOS was collected by a compacting collector. The x-axis

shows the number of warehouses used in the experiment, the y-

axis shows the normalized score (a higher score implies higher

performance), and we compared a 8 MB, a 16 MB, a 32 MB, a 64

MB, and an adaptive NOS size. Figure 7 clearly demonstrates that

NOS size adaptation with the Space Tuner can achieve much

better performance than all of other fixed NOS size settings.

Specifically, the performance is almost 5x better than that of the

8MB NOS. This result demonstrates that the Space Tuner

algorithm not only works for the space adjustment between LOS

and non-LOS, but it can also be applied to any case that involves

the partitioning of a space into multiple spaces.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#warehouses

N
o
rm
a
liz
e
d
 s
c
o
re
s

8MB 16MB 32MB

64MB Adaptive

Figure 7: SPECjbb2005 performance with different "OS sizes

5.2 The non-LOS Parallel Compaction

In order to evaluate the effect of our parallel compaction

algorithm on non-LOS, we implemented a fully parallel LISP2

compactor in Apache Harmony. In this experiment we ran

specjbb2005 on an Intel 8-core machine. We first checked the

scalability of this algorithm. We examined the time spent in

different phases as shown in Figure 8. The parallel compactor ran

with 1, 2, 4, and 8 collectors. It clearly demonstrates that all four

phases in our parallel LISP2 design achieved significant

speedups. On average, the speedups of the four phases were 1.4x,

2.3x, and 3.7x respectively with 2, 4, 8 collectors. This result

indicates that all four phases of our design are scalable. In other

words, no individual phase would become the bottleneck of

overall performance.

Each Phase's Time (8 warehouses)

0

50

100

150

200

250

300

350

400

marking relocating fixing moving

m
s

seq par 2 collectors par 4 collectors par 8 collectors

Figure 8: Scalability of parallel non-LOS compaction

Figure 9 shows the impact of the parallel compaction

algorithm on the overall GC performance. The metric we use here

is GC pause time in units of milliseconds, which is the y-axis of

Figure 9. The results indicate that the overall normalized pause

time had been reduced steadily from 100% to 70%, 43% and 27%

as 1 thread, 2 threads, 4 threads, and 8 threads were used,

respectively.

SPECjbb2005 GC Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Warehouses

m
s

seq par 2 collectors par 4 collectors par 8 collectors

Figure 9: the impact of the parallel compaction algorithm on

the overall GC performance

5.3 The LOS Parallel Compaction
To demonstrate the effect of the parallel LOS compaction

algorithm, we modified the Apache Harmony GC with separate

allocation spaces to incorporate this algorithm for LOS

compaction. We focused on the xalan benchmark because it is

large-object-intensive. Figure 10 shows the scalability of this

algorithm on xalan, pmd, and bloat. Besides xalan, the other two

benchmarks are not large-object-intensive. We included them to

demonstrate that the algorithm is still scalable even though the

number of large objects is limited. The metric we use here is the

normalized LOS compaction time. On average, the speedups of

the parallel large object compaction were 1.56x, 2.10x, and 2.64x

respectively with 2, 3, 4 collectors.

Scalability of the Parallel LOS Compaction

Algorithm

0

0.2

0.4

0.6

0.8

1

1 2 3 4

Number of Threads

N
o
rm
a
li
z
e
d
 L
O
S

C
o
m
p
a
c
ti
o
n
 T
im
e

Xalan

PMD

Bloat

Figure 10: Scalability of parallel LOS compaction

Then we studied how this parallel LOS compaction

algorithm would impact the performance of the overall program

execution. To get this data, we ran the respective benchmarks with

1, 2, 3, and 4 large object compaction threads and measured the

total execution time. The results are organized in Figure 11. It

shows that when we ran xalan with 4 parallel compaction threads,

a performance gain of about 3% was achieved. Although this

seems to be a small performance gain, but since garbage

collection only takes less than 10% of the total execution time,

this result is actually a great improvement on GC performance.

Note that other benchmarks, such as pmd, hsqldb, and bloat did

not show significant performance gain or any trend of

performance improvement. This is because these benchmarks are

not large-object-intensive, thus optimizations on large object

compaction can induce little impact on the overall performance.

Impact of Parallel LOS Compaction

0.97

0.98

0.99

1

1 2 3 4

Number of Threads

N
o
rm
.
E
x
e
.
T
im
e

Xalan

Pmd

hsqldb

bloat

Figure 11: Impact of parallel LOS compaction on overall

execution time

5.4 The "eed for Load Balance
The proposed parallel compaction algorithms would achieve high

performance only if the workload for each thread is balanced. In

our study on LOS load balance with xalan, we found that the max

length of a dependency list was 48, while the majority (78%) of

dependency lists contained only one moving task (only one source

block and one target block). This result has two implications:

First, without optimization, the dependency lists were highly

imbalanced such that there were several long lists and a large

amount of short lists, and the long lists became the performance

bottleneck since they could only be executed sequentially.

Second, it required an atomic operation to fetch a dependency list,

when the list contained only one block, then the performance gain

could be very low. Actually, we found out that this overhead was

38%, that is, if the task takes 100 cycles to move a block, then the

synchronization overhead to fetch this task is 38 cycles on

average. In another study on non-LOS load balance with

SPECjbb2005 benchmark, we found out that the maximum depth

of a dependence tree was 353 while the average depth was only

22.3. Also, the maximum number of child nodes for each node

was 20 while the average was 1.5. This implies the possibility of

the existence of some huge trees that contained a large number of

nodes, along with some small trees that contained only few nodes.

To solve these problems, we have implemented a heuristics which

counts the total number of dependence lists and divide them into

N (number of threads) chunks and then collapse each chunk into a

dependence list or tree. This heuristic has been utilized in the

experiments shown in the previous sections. And as indicated by

Figure 7 and 10, the results have demonstrated good speedups.

6. CO"CLUSIO"
As multithreaded server applications prevail, Garbage collection

(GC) technology has become essential in managed runtime

systems. Space and time efficiency are the two most important

design goals in garbage collector design. In this paper, we have

proposed a complete algorithmic framework to improve both the

space and time efficiency in parallel compacting GC design. This

framework includes the Space Tuner, which dynamically adjusts

the heap partitioning to maximize space utilization; the parallel

compaction algorithm, which aims to fully parallelize the

compaction process in both the large object space (LOS) and non-

large object space (non-LOS) in order to achieve time efficiency.

We have evaluated the effectiveness of these mechanisms.

The results show that the Space Tuner is able to largely improve

the heap space utilization; this also leads to a certain performance

improvement because the number of garbage collections has also

been reduced. Further, we have demonstrated that our parallel

compaction algorithm was scalable in both non-LOS and LOS. To

test its effectiveness in non-LOS, we utilized this parallel

compaction algorithm to produce a novel parallel version of the

conventional LISP2 compactor and the results are encouraging.

This algorithm offers an elegant and new solution to the well-

known problem of parallel compaction in large object space.

Although we have proven our algorithms on a parallel

compacting GC from Apache Harmony, these algorithms are by

nature generic and have much broader applications. For the Space

Tuner, we have demonstrated their effectiveness for both

NOS/MOS boundary adjustment and for LOS/non-LOS boundary

adjustment. It can indeed be extended to any design with multiple

allocation spaces. For the parallel compaction algorithms, we

have demonstrated their effectiveness in both LOS and non-LOS

design. These algorithms can be extended to any design that

involves object movements, such as those GC designs with two or

three phases.

Our ongoing work is to apply the techniques developed here

to more GCs, and compare them with other parallel GC

algorithms. One of the interesting areas for our next step is to

combine the techniques with virtual memory support in GC

design.

7. ACK"OWLEDGME"TS
This work is partly supported by the National Science Foundation

under Grant No. CCF-0541403. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the

National Science Foundation.

8. REFERE"CES
[1] P.J. Caudill, A. Wirfs-Brock. A Third Generation Smalltalk-
80 Implementation. Conference proceedings on Object-oriented

programming systems, languages and applications, Portland,

Oregon, USA, 1986

[2] M. Hicks, L. Hornof, J.T. Moore, S.M. Nettles. A Study of
Large Object Spaces. In Proceedings of International Symposium

of Memory Management, Vancouver, British Columbia, Canada,

1998.

[3] S. Soman, C. Krintz, D.F. Bacon. Dynamic selection of
application-specific garbage collectors. In Proceedings of

International Symposium of Memory Management, Vancouver,

British Columbia, Canada, 2004.

[4] D. Barrett and B.G. Zorn. Garbage Collection using a
Dynamic Threatening Boundary. In Proceedings of ACM

SIGPLAN Conference on Programming Language Design and

Implementation, La Jolla, California, 1995.

[5] R.E. Jones. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, Chichester, July 1996.

With a chapter on Distributed Garbage Collection by R. Lins.

[6] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel
garbage collection for shared memory multiprocessors. In

Proceedings of the USENIX Java Virtual Machine Research and

Technology Symposium, Monterey, California, 2001

[7] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An
efficient parallel heap compaction algorithm. In the ACM

Conference on Object-Oriented Systems, Languages and

Applications, Vancouver, British Columbia, Canada, 2004.

[8] H. Kermany and E. Petrank. The Compressor: Concurrent,
incremental and parallel compaction. In Proceedings of ACM

SIGPLAN Conference on Programming Language Design and

Implementation, Ottawa, Canada, 2006.

[9] M. Wegiel, C. Krintz, The Mapping Collector: Virtual
Memory Support for Generational, Parallel, and Concurrent

Compaction, In Proceedings of International Conference on

Architectural Support for Programming Languages and Operating

Systems , Seattle, WA, 2008.

[10] Apache Harmony: Open-Source Java SE.
http://harmony.apache.org/

[11] Spec: The Standard Performance Evaluation Corporation.
http://www.spec.org/

[12] Dacapo Project: The DaCapo Benchmark Suite. http://www-
ali.cs.umass.edu/dacapo/index.html

[13] Ming Wu and Xiao-Feng Li, Task-pushing: a Scalable
Parallel GC Marking Algorithm without Synchronization

Operations. In Proceedings of IEEE International Parallel and

Distributed Processing Symposium, Long Beach, California,

2007.

[14] Common Language Runtime Overview.
http://msdn.microsoft.com/en-us/library/ddk909ch(vs.71).aspx

[15] G.L. Steele. Multiprocessing Compactifying Garbage
Collection. Commun. ACM 18, 9 (Sep. 1975), 495-508.

[16] E.W. Dijkstra, L. Lamport, A.J. Martin, C.S. Scholten, and
E.F. Steffens. On-the-Fly Garbage Collection: an exercise in

cooperation. Commun. ACM 21, 11 (Nov. 1978), 966-975.

[17] T. Endo, K. Taura, and A. Yonezawa. A Scalable Mark-
Sweep Garbage Collector on Large-Scale Shared-Memory

Machines. In Proceedings of the 1997 ACM/IEEE Conference on

Supercomputing.

[18] D. Doligez and G. Gonthier. Portable, Unobtrusive Garbage
Collection for Multiprocessor Systems. In Proceedings of the 21st

ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages

[19] T. Domani, E.K. Kolodner, and E. Petrank. A generational
on-the-fly garbage collector for Java. In Proceedings of the ACM

SIGPLAN 2000 Conference on Programming Language Design

and Implementation

[20] H. Azatchi, Y. Levanoni, H. Paz, and E. Petrank. An On-the-
Fly Mark and Sweep Garbage Collector Based on Sliding Views.

In Proceedings of the 18th Annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and

Applications

