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Abstract 
Dynamic typing is a barrier for JavaScript applications to 
achieve high performance. Compared with statically typed 
languages, the major overhead of dynamic typing comes from 
runtime type resolution and runtime property lookup. Common 
folks’ belief is that the traditional static compilation techniques 
are no longer effective for dynamic languages. The best known 
JavaScript engines such as Mozilla TraceMonkey and Chrome 
V8 have developed non-traditional techniques to reduce the 
runtime overhead. This paper describes TypeCastor, a new 
JavaScript engine that tries to investigate where and how much 
the dynamism really is in JavaScript applications, thus to 
demystify their dynamic typing behavior. To verify our findings, 
we evaluate TypeCastor with SunSpider benchmark. For type 
resolution, we find 99% of all the primitive type instances can 
be statically identified before the program execution. For object 
property lookup, more than 97% of all runtime property accesses 
can be satisfied by inline cache. These data mean that the 
representative JavaScript applications are not that dynamic as 
people expect, although the language provides the flexible 
dynamism supports. Though not developed for pure 
performance, TypeCastor achieves 5.6% and 12.7% higher 
scores compared to current Chrome V8 and Mozilla 
TraceMonkey engines respectively. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors---
optimization, runtime environments 

General Terms 
Algorithms, Performance  

Keywords 
Dynamic typing, JavaScript, type analysis, inline caching  

1. Introduction 
JavaScript is a popular programming language for client-side 
web development. Many popular applications, such as Google 
Desktop Gadgets, Adobe’s Flash, and the latest HTML5 

standard, use JavaScript as the development language. The 
flexibility and expressiveness make it easy for web designers to 
work with. Dynamic typing is one of its major enabling factors. 

However, dynamic typing can degrade the performance of the 
programs. This drawback could impact JavaScript language’s 
applicability in computation intensive applications, which are 
increasingly common in new web applications. Hence some big 
industry players remain using statically typed languages for their 
web applications.  

The overhead of dynamic typing comes mainly from the runtime 
type resolution and runtime property lookup. The community 
has developed various optimization techniques to solve the 
performance problem. The techniques mainly include type 
inference, type specialization, and inline caching. Type 
inference identifies the variable types based on program analysis 
or a type system summarized from the language. Type 
specialization tries to speculate on the variables types based on 
the runtime type profiling. Inline caching records the results of 
previous property lookups at the call site, assuming that the 
objects types are not changed frequently. 

The common folks’ belief is that JavaScript applications are 
quite dynamic at runtime hence the traditional compilation 
techniques may no longer be effective. In this paper, we try to 
demystify the dynamic behavior of JavaScript programs by 
identifying where and how much the dynamism really is. The 
main contributions of the paper include: 

1. We design an effective and efficient type analysis algorithm 
that speeds up the variable type resolution. Type inference and 
type prediction can be applied to the program variables during 
the analysis. In our evaluation with SunSpider benchmark, more 
than 99% of all the primitive type instances can be correctly 
identified. This finding is significantly different from the 
traditional impression on the type dynamism of JavaScript 
programs. 

2. We propose “position inline caching” mechanism to speed up 
the object property access. Different from other inline caching 
techniques, position inline caching can improve the property 
access even if the object type is changed at runtime. In our 
evaluation with SunSpider benchmark, among all the runtime 
property access instances, 97% of them can successfully hit in 
the cache. This finding is also different from the traditional 
impression on the object dynamism of JavaScript programs. 

3. We develop the TypeCastor JavaScript engine from the 
scratch and validate our findings with SunSpider benchmark. 
Although it is not designed for absolute performance, 
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TypeCastor gets 5.6% and 12.7% higher scores compared to 
Chrome V8 and Mozilla TraceMonkey engines respectively. 

The paper is organized as follows. Section 2 discusses the 
related work. Section 3 describes the infrastructure of 
TypeCastor engine. Section 4 introduces TypeCastor type 
analysis algorithm and the associated optimizations. Section 5 
presents TypeCastor inline caching mechanisms. Section 6 
introduces the developed memory optimizations. Section 7 
analyzes JavaScript dynamism in SunSpider benchmark with 
TypeCastor. Section 8 summarizes the paper and discusses 
future work. 

2. Related work 
Thiemann �[1]  proposes a type system to check JavaScript 
programs statically. It is focused on the type system design and 
soundness proof. In later work, Heidegger and Thiemann �[7]  
propose a recency-based type system and sketch an inference 
algorithm in the system. The usage of the recency abstractions 
�[8]  for the objects turns the weak object updates in the 
JavaScript program into strong updates, and increases the 
analysis accuracy significantly �[3] . 

Anderson et al �[2]  design a type system with an inference 
algorithm for the primitive subset of the JavaScript types. The 
type system allows objects to be inferred in a controlled manner 
by classifying the properties as being definite or potential. Their 
system does not model type change, and the transition between 
the presence and absence of a property is harder to be predicted 
than in a recency-based system. 

Jang and Choe �[9]  develop a point-to analysis for JavaScript to 
enable some program optimizations. They demonstrate their 
result by applying partial redundancy elimination to the property 
references. The analysis is flow and context insensitive, and is 
limited to a subset first-order language.  

Jensen et al �[3]  introduce a lattice model for the static type 
analysis of the full JavaScript language. Recency abstraction is 
used for the type representation in the analysis. The algorithm 
complexity is high in modeling object property. 

Chrome V8 �[5]  is a high performance JavaScript engine 
developed by Google. Hidden class and method inline caching 
are the major optimization techniques. Hidden class uses a 
common data structure to represent the type of the objects that 
have same properties. 

Apple’s JavaScript engine SFX (SquirrelFish Extreme) �[10]  
compiles JavaScript code into intermediate bytecode sequence 
and then interprets the sequence with context-threaded JIT. It 
develops polymorphic inline caching to speed up the property 
access. The StructureID �[10]  concept for inline caching is 
similar to the hidden class of Chrome V8. 

Mozilla TraceMonkey �[6]  is a trace-JIT extension to 
SpiderMonkey JavaScript engine �[12] . It profiles the program at 
runtime and identifies the hot traces for cross-procedural type 
specialization. “Shape” object �[19]  is used to represent the 
object type to speed up the property access.  

Mozilla Rhino �[4]  is a JavaScript engine written in Java. It 
compiles the scripts into Java class files and runs them on a 

JVM. Rhino’s performance is obviously lower than Chrome V8 
and Mozilla TraceMonkey in our evaluations with SunSpider 
benchmark. 

3. TypeCastor design overview 
We develop TypeCastor to demystify the dynamic behavior of 
JavaScript program. We also want to understand the 
implications of dynamic typing and object inheritance to 
compiler design. To serve the purpose, a phased compilation and 
optimization model is used in TypeCastor. In the first phase, the 
high level and sophisticated optimizations are performed with 
static compilation. In the second phase, the low level and 
platform specific optimizations are conducted at runtime in an 
execution engine. The first phase generates statically typed 
intermediate representation (IR), thus in the second phase a 
traditional runtime engine such as JVM can be used. 

This infrastructure design has following advantages. Firstly, it 
enables both ahead-of-time (the first phase) and just-in-time (the 
second phase) compilations, so that we have opportunity to 
tradeoff the merits and drawbacks between the phases. 
Secondly, the design does not lose any benefits of type safety 
and program portability of JavaScript, because the second phase 
only accepts type safe IR. As a natural result, TypeCastor can be 
easily ported to other runtime systems. Thirdly, this design 
matches well with current web-service computing model, where 
the computation is partitioned between the server and client. In 
our implementation, we choose Java bytecode as the TypeCastor 
IR for convenience since it is well designed and we have a 
runtime engine developed for it already. 

Figure 1 illustrates the static compilation part of the TypeCastor 
framework. In Step 1, the JavaScript source code is transformed 
into AST and the corresponding control flow graph (CFG). Then 
in the followed steps, TypeCastor conducts a few analyses and 
optimizations to tackle the dynamism of JavaScript language. 
Step 2 (type inference and prediction) and Step 3 (type 
specialization and scalar representation) are analyses and 
optimizations for variable type resolution. Step 4 (inline 
caching) is optimization for object property lookup. Step 5 
(dense array optimization and scope localization) are memory 

AST 

CFG 

Step1: Lexical and 
syntactic analysis 

Step3: Type specialization 
and Scalar representation 

Step2: Type inference and 
prediction 

Step4: Inline caching 

Step5: Dense array opt. 
and scope localization 

Step6: Traditional 
compiler opt. CSE DCE 

Step7: Bytecode IR 
generation 

JavaScript 

source code 

IR Files 

Figure 1. Framework of TypeCastor 



 

 

optimizations for special objects’ property access. Before 
emitting bytecode IR in Step 7, TypeCastor conducts simple 
traditional optimizations (CSE and DCE) in Step 6 to reduce the 
redundancy in the data and code.  

4. Type analysis to reduce type resolution 
overhead 

The type analysis in TypeCastor tries to infer the primitive types 
of the variables before the program execution. For a variable 
whose type cannot be inferred exactly, TypeCastor predicts its 
most possible type. Based on the type analysis result, the 
optimizations like type specialization and scalar representation 
are applied. 

4.1 Constraints for type analysis 
TypeCastor develops a constraint-based type analysis algorithm. 
We extract the expression-based set constraints �[13]  from the 
JavaScript language specification �[14] , and then use the 
constraints as the typing rules in the analysis. 

Based on the nature of JavaScript language, we divide the 
expression-level rules into two kinds: type inference rules for 
result variables and type prediction rules for operand variables. 
(Table 3 in Appendix gives the concrete constrains for all the 
expressions in JavaScript.) 

An observation of JavaScript language is that, the result type is 
mostly static, without any runtime dynamism. For example, the 
result type of “delete” operation is known to be always Boolean. 
For a few cases where the result type is not statically defined, 
such as “add” operation, the type still can be inferred from the 
source operand types. 

As a comparison, the types of source operands are usually 
ambiguous in compilation time. TypeCastor tries to predict their 
types by using available type information in the expression and 
by applying best guess based on the common programming 
practice. For example, if “a” is known to have string type in 
expression “a + b”, TypeCastor predicts that it is highly possible 
for “b” to have string type as well. This is reflected in the 
operand typing rule for “e1 + e2”: “e2’s type set is {String} if 
e1’s type set is {String}”. 

TypeCastor performs type analysis for all the variables with 
possible types of “Undefined, Null, Boolean, Number, String, 
JSObject”. This is different from all other known JavaScript 
type analyses �[4] �[5] �[6] , which only distinguish the Number 
type and non-Number type, without telling the exact primitive 
types of those non-Number variables. In our evaluation with 
SunSpider benchmark, the non-Number primitive types cover 
31% of all the type instances; thus it is highly useful to refine 
their types with extra details. 

TypeCastor gives all the objects same type JSObject without 
further analyzing different object types. We try to get the same 
benefit with inline caching optimizations. We believe this is a 
good design tradeoff between cost and benefit. Complete type 
inference for objects is a NP-complete problem, and at least 
O(n³) complexity is required for a reasonable analysis �[16] . 
Simon Holm et al �[3]  show that the algorithm complexity of a 
context-sensitive object type analysis is much bigger than that of 
primitive types’ analysis. The reason is that, any difference in 
the object properties or the scope chains makes different object 

types, and they can be dynamically generated. As a contrast, 
there are only a few definite primitive types in JavaScript. 

4.2 Flow-sensitive type analysis 
TypeCastor performs function-level type analysis by 
propagating the expression-level type information along the 
CFG. The function-level analysis achieves both bigger coverage 
and higher accuracy. The analysis algorithm in TypeCastor is 
intra-procedural and flow-sensitive. It has two passes. A forward 
pass propagates the expressive-level inferred types to the entire 
function, along the define-use chains of the variables; and a 
backward pass propagates the predicted types along the use-
define relations. 

In the analysis, type sets will used because a variable may have 
multiple inferred or predicted types in a function. Although a 
variable can have a single inferred type at a certain program 
location, it may have different inferred types at different 
locations. Meanwhile, a variable can have more than one 
possible type at one program location, either because the type 
can dynamically change at runtime, or because the type cannot 
be identified statically by the algorithm. So type set is an 
appropriate data structure for the analysis.  

In the analysis, every variable will be associated with two kinds 
of type sets. One kind is local type set and the other is global 
type set. The local type sets are used for computation 
optimizations. A local type set of a variable v has all the possible 
types of v at a specific program location. For a single variable v 
at statement s, there are two local type sets: the local inference 
set (T(S)[v]) and the local prediction set (PT(S)[v]). The global 
type sets are used for storage optimization. A global type set of a 
variable v contains all the possible types of v at different 
locations of a function. Every variable v in the function has two 
global type sets: the global inference type set (GT[v]) and the 
global prediction type set (GPT[v]). Equations (1) to (7) denote 
how TypeCastor’s local type analysis works in a basic block. In 
the analysis, local type sets are calculated according to equations 
(1) to (5), and global type sets are calculated by equations (6) 
and (7). 
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In the equations, the type sets of all variables at statement S 
constitute two type sets collections: the local inference type sets 
collection (T(S)) and the local prediction type sets collection 
(PT(S)), so that the type sets can be propagated inner the basic 
block. in_T(S) and in_PT(S) are the type sets propagated from 
the previous statements (For type prediction, the previous 
statements are the statements before current one in reversed 
execution order). For the type set analysis inner a statement S, 
gen_T(S)[v] and gen_PT(S)[v] are used to represent the type 
sets which are generated by the expression-level type inference 
rules for the variable v; kill_T(S) and kill_PT(S)[v] are the types 
sets of variables(or variable v) inferred and predicted before S 



 

 

that are also inferred and predicted in S; V(S) is the variable set 
used in the statement and V represents all variables in the 
function. In the equations, Ø represents the empty type set. For 
the variables which are not used in the statement, their generated 
and killed type sets will all be Ø. 

Equations (3), (4) and (5) denote how the inferred type sets 
(cg_T(S)), predicted type sets (cg_PT(S)) and killed predicted 
type sets (ck_PT(S)) are calculated for each statement S. 
Different with the type inference, type prediction can only be 
applied to the variables that have no inferred type set before it is 
used. At the same time, different execution paths may lead to 
different variable type sets in the flow sensitive analysis. These 
problems bring about the requirement to trace the un-inferable 
variable type in the analysis. In the equations, � is a new type 
defined to trace the un-inferable variable type. It means that a 
variable’s type which can be any JavaScript primitive type. In 
type inference pass, if a variable’s type cannot be inferred along 
an incoming path, it will have a type � in its inferred type set. In 
the type prediction pass, type prediction will only be applied to 
the variable with � in its inferred type set. 

 in    statement last     theis    )()(_ BBSSTBBTout =  (8) 

 )(_)(_ )( PToutBBTin BBpredp∈= �  (9) 

    of   statement first      theis   )()(_ BBSSPTBBPTout =  (10) 

 )(_)(_ )( PPToutBBPTin BBsuccessp∈= �  (11) 

Based on the local type analysis result, global flow sensitive 
type analysis can be applied to propagate the type information 
and improve the accuracy of the analysis. To facilitate the 
analysis, every basic block has live-in/live-out type sets for 
every variable, including the live-in/live-out inference sets 
(in_T(v), out_T(v)) and the live-in/live-out prediction sets 
(in_PT(v), out_PT(v)). Different with traditional data flow 
analysis, in the type flow analysis, the live-out type sets of a 
statement will change according to the change of live-in type 
sets. So, the type sets of last statement in local type analysis will 
be live-out type set of the basic block. 

The flow equations from (8) to (11) denote the transfer functions 
used in global type flow analysis. The analysis scans code along 
the CFG and does the local type analysis and propagates the 
generated type sets block by block according to these equations. 
During the CFG scanning, the analysis algorithm checks if the 
traversal should proceed with current control flow path (or 
branch) at the entry of every basic block. When a new live-in 
sets is calculated for a basic block, the algorithm checks if the 
new live-in set is the same as the block’s original live-in set (i.e., 
in_T(BB) in the forward pass, or in_PT(BB) in the backward 
pass). If the live-in sets are different, meaning there are some 
changes in the variables identified types, the algorithm should 
continue to analyze the current block. Otherwise, the traversal 
skips it, and proceeds with the remaining branches. When there 
is no other branch, this pass terminates. 

Table 1 and 2 show how the global type analysis algorithm 
works on the example in Figure 2. Table 1 presents the process 
of type inference. Table 2 presents the process of type 
prediction. To simplify the processes, in our example, each basic 
block contains single statement, and the live-in/live-out type sets 
of a basic block equal to the corresponding type sets of the 
statement in it. From the processes, we can find that: 1) The type 

of c variable in BB6 will not be predicted due to its inferred 
type; 2) The type of a variable in BB2 and BB3 will be predicted 
because there is a path from entry in which the type of the 
variable cannot be inferred. 

 
Table 1. Type inference process  

Table 2. Type prediction process 

 
Since there are only a handful of primitive types, the number of 
all different sets under union operation is a small constant. The 
termination condition of the algorithm checks for the live-in 
type sets difference. This means the algorithm always converges 
in O(nm) time, where n is the number of the basic blocks in the 
CFG and m is the number of variables. 

Compared to the type analysis methods developed in other 
JavaScript type checking tools or JavaScript engines, the 
TypeCastor algorithm is simpler because it does not distinguish 
different object types. But it is effective enough in our 
evaluation. The result shows that statically inferred and correctly 
predicted type instances can cover more than 99% of all the 
primitive type instances in the SunSpider benchmark. 

Basic 
block 

cg_T Kill_T In_T Out_T 

0 {{�}, Ø} {Ø , Ø} {Ø, Ø} {{�}, Ø } 
1 {Ø , {Num}} {Ø , Ø} {{�}, Ø} {{�}, {Num}} 
2 {{�} , Ø} {Ø , Ø} {{�} , {Num}} {{�}, {Num}} 
3 {{�} , Ø} {Ø , Ø} {{�} , {Num}} {{�}, {Num}} 
4 {Ø , {Num}} {Ø , {Num}} {{�} , {Num}} {{�} , {Num}} 
5 {{Num}, Ø} {{�} , Ø} {{�} , {Num}} {{Num}, {Num}} 
2 {{�} , Ø} {Ø, Ø} {{Num}, {Num}} {{Num,{�}}, {Num}} 
3 {{�} , Ø} {Ø, Ø} {{Num,{�}}, {Num}} {{Num,�}}, {Num}} 
4 {Ø , {Num}} {Ø, {Num}} {{Num,{�}}, {Num}} {{Num,{�}}, {Num}} 
5 {{Num}, Ø} {{Num,{�}}, Ø} {{Num,{�}}, {Num}} {{Num}, {Num}} 
6 {Ø, �} {Ø, Ø} {{Num}, {Num}} {{Num}, {Num}} 

Basic 
block 

cg_PT cg_PT In_PT Out_PT 

6 { Ø, Ø} { Ø, Ø } { Ø, Ø } { Ø, Ø } 
5 { Ø, Ø } { Ø, Ø } { Ø, Ø } { Ø, Ø } 
4 { Ø, Ø } { Ø, Ø } { Ø, Ø } { Ø, Ø } 
3 {{Num}, Ø } { Ø, Ø } { Ø, Ø } {{Num}, Ø } 
2 {{Num}, Ø } {{Num}, Ø } {{Num}, Ø} {{Num}, Ø } 
5 { Ø, Ø } {{Num}, Ø } {{Num}, Ø } { Ø, Ø } 
1 { Ø, Ø } { Ø, Ø } {{Num}, Ø } {{Num}, Ø } 
0 { Ø, Ø }  { Ø, Ø } {{Num}, Ø } {{Num}, Ø } 

Source code: 

function get_bit_cnt(a) { 

var c = 0; 

  while (a != 0) { 

    if (a & 1)  

c++; 

a >>= 1; 

} 

  return "Result is " + c; 

} 

a&1!=0 

a != 0 

a >>=1; 

c = 0; 

c++; 

BB1 

BB2 

BB3 

BB4 

BB5 

"Result is "+c; BB6 

Entry BB0 

Figure 2. Example of global type analysis 

CFG: 



 

 

4.3 Type analysis based optimizations 
Based on the result of type analysis, TypeCastor applied two 
optimizations to reduce the overhead introduced by dynamic 
typing. They are static type specialization and scalar 
representation.  

4.3.1 Static type specialization 
Type specialization is commonly used in current JavaScript 
engines to optimize the execution �[17] . In other known engines, 
type specialization is mostly based on runtime type profiling, 
while in TypeCastor it is based on the static type analysis result. 
If the type analysis is accurate enough, TypeCastor can avoid 
the profiling overhead without losing any benefits of the 
dynamic type specialization. Nonetheless, the two approaches 
are complementary, i.e., the static type specialization does not 
exclude the application of dynamic type specialization.  

In TypeCastor, type specialization is used for both inferred and 
predicted types. Since the inferred types are exact at certain 
program locations, TypeCastor directly generates code for the 
inferred types. When a variable’s inferred types are different at 
different program locations, the code for type conversion is 
added before the second access instance. For the predicted types, 
TypeCastor generates two paths for the same piece of code: One 
is the fast path specialized with the predicted type and the other 
is the slow path in case the prediction is wrong.  

Figure 3 shows an example of type specialization in pseudo-
code. In the example, ‘x’ is predicted to have string type. The 
generated code firstly compares the type of ‘x’ with string type. 
If the check returns true, the code takes the fast path and loads 
the string directly. Otherwise it goes to the slow path, where a 
string conversion is needed before the string loading.  

4.3.2 Scalar representation 
Since the type of a variable is dynamic at runtime, most 
JavaScript engines �[4] �[5] �[6]  use heap data structure to 
represent the variable. This is simple for the implementation, but 
has performance impact due to the memory management and 
heap access overhead. To improve it, Chrome V8 multiplexes 
the object reference representation for integer values, and 
TraceMonkey uses unboxing technique when appropriate. 

Different from the others, TypeCastor tries to use scalars to 
represent JavaScript variables directly. It works in this way:  

For a local variable whose type can be statically inferred at 
certain program location, a scalar is used to represent the 

variable at that location. Note that different locations may access 
different scalars of the same variable because it may have 
different inferred types at different locations.  

For a local variable whose types are predicted, TypeCastor 
generates scalars for it in the same way as for type-inferred 
variables except that, the allocated space for the variable should 
be able to hold a type tag and an object reference so that the 
variable can be represented by a heap data structure in case the 
prediction is wrong.  

For a global variable accessed only in leaf functions, TypeCastor 
applies the unboxing technique as well as other engines do. 

The scalar representation in TypeCastor reduces the amount of 
memory dereferences dramatically, because the scalars can be 
largely allocated in the registers by the compiler.  

5. Inline caching to reduce property lookup 
overhead 

In JavaScript, an object is actually a mapping from its property 
names to its property values. New object is created through 
object inheritance (or called “object cloning” in some 
literatures). The properties of an object can be dynamically 
added or removed. Due to the dynamism, object property access 
is usually slow in JavaScript, since the runtime physical position 
of a property is hard to determine in the compilation time. Inline 
caching is commonly used to speed up the property access. 
Assuming that the object type is not changed frequently, the 
property related info can be cached in a data buffer or be 
embedded in code at the access spot (with self-modifying 
technique) to speed up the property access [4][5][6][10].  

Guarding code is needed to ensure the correctness when the 
cached info is no longer valid. In current known inline caching 
solutions, the guarding code is normally to check if the object 
type is changed. Essentially all these solutions treat the property 
access problem as a type resolution problem.  

Different from the known solutions, TypeCastor develops two 
new solutions, position inline caching and prototype inline 
caching. Position inline caching treats the property access 
problem as a value locating problem. It can improve the 
property access even if the object type is changed at runtime. 
Prototype inline caching predicts the property position in the 
prototype object when the property is not overridden by the 
object. 

5.1 Position inline caching 
In TypeCastor, an open-addressing hash-table is used to 
represent an object. The property name is the hash key. When a 
property is to be accessed with its name, a hashing function is 
used to compute the hash-table entry number from the name 
string, and then access the property value in that entry. The entry 
number is the data to be cached in the mechanism, which is the 
position of the property in the object hash-table. Once the 
position is known, the value in that position (hash-table entry) 
can be accessed directly. 

Position inline caching works as follows. The cache is arranged 
as an array that is indexed with the source code line number. 
The array element stores the position of the object property 
accessed at that line number. At runtime when the code accesses 
a property with its name string, it firstly loads the property’s 

Source code: 
funcc add_prefix(x) { 

  return "pre"+x; 

} 

Predicted type of x: 
PT(x)= {String} 

Generated code: 
if(Typeof(x)==String){ 

//fast path 

s = x.stringValue(); 

return “pre” + s; 

}else{ //slow path 

sx=ConvertToString(x); 

s = sx.stringValue(); 

return “pre” + s; 

} 

Figure 3. Example of type specialization 



 

 

position value from the cache. Then it loads the property’s name 
string from that entry of the object, and checks if it is the 
accessed property. If the check returns true, it means a cache hit 
and the property value is loaded from the same entry. Otherwise, 
it is a cache miss and a slow path is taken to lookup the property 
in traditional way. Note that we use immutable strings in 
TypeCastor to speed up the string comparison. 

  

Figure 4 illustrates position inline caching with an example. At 
line number 2 of the source code, there is a property access 
list[i].price. In the object layout table, the property “price” is 
stored in entry number 1, which is cached in the position cache 
buffer[2]. TypeCastor generates inline caching code to access 
list[i].price.  

Another example can exhibit the difference between position 
inline caching and other traditional mechanism. (Shown as Code 
A in Appendix). The source code is an algorithm sorting an 
object list. The objects initially are of same type with a property 
“value”. Then two alternating properties “is_even” and “is_odd” 
in the objects are initialized to mark different objects. 
Traditionally the objects with “is_even” or “is_odd” are treated 
as two different object types. When the code accesses the 
property “value” in a loop, traditional object inline caching 
mechanism does not work at all (i.e., the cache always misses) 
due to the constant change of the object types (with alternating 
“is_even” or “is_odd” properties.) But TypeCastor works in this 
case, because the positions of the property “value” are the same 
across different objects.  

We use two versions of the sorting algorithm to show the 
difference of Chrome V8’s hidden class and TypeCastor’s 
position inline caching. Version 1 and version 2 are the same as 
described above except that version 2 does not have the 
properties of “is_odd” and “is_even”. We measure the 
performance slowdown when running version 1 compared to 
version 2. We find that, when introducing properties “is_odd” 
and “is_even”, the program slows down more than 70% with 
hidden class technique, while the slowdown is less than 1% with 
position inline caching. 

5.2 Prototype inline caching  
In JavaScript language, if a prototype property of an object is 
not overridden, the runtime engine needs to traverse the object 
inheritance tree to find the target property. This searching 
process is time consuming. TypeCastor optimizes it by caching 
the prototype object reference and the property position in the 
prototype. This is called “prototype inline caching”. 

Prototype inline caching works in this way: When the position 
inline caching described in previous subsection fails to hit in the 
cache for a target property access, the code checks if the 
following conditions are satisfied: 

� The target property in the prototype is not overridden by 
current object; 

� The cached prototype is the prototype of current object; 
� The cached position has the target property. 

If all the checks return true, the property value can be retrieved 
directly from the cached prototype property without traversing 
the inheritance tree.  

Prototype inline caching only works when the accessed property 
is not overridden by the object. This is not a limitation but 
actually a neat feature. The reason is, if the property is in the 
object, position inline caching will hit in cache; otherwise, 
prototype inline caching effects. These two caching mechanisms 
are very well complementary. The position inline caching is like 
the first-level cache in microprocessor architecture, and the 
prototype inline caching is like the second-level cache. In our 
evaluation, they indeed behave like the microprocessor cache 
hierarchy. 

6. Memory optimizations for special objects 
property access 

Besides the type analysis based optimizations and inline caching 
optimizations, TypeCastor develops additional techniques to 
further reduce the dynamic typing overhead. One is related to 
array access, where traditional array layout is used to represent 
JavaScript array. The other optimization is about the scope-
based data localization.  

6.1 Dense array optimization  
Dense array refers to the array instance whose element accesses 
mostly fall into a small range of array indices. In JavaScript 
language, an array is like a common object except that the 
properties can be accessed with numerical index. To optimize 
dense array access, a linear array (with adjacent elements in 
heap) is used to represent the dense part of the array, and the 
elements out of the range of the linear array are stored in a hash-
table, as usual. The linear array is a C-style reference array, 
whose elements are object references pointing to the element 
objects. In this way, most of the array accesses can be satisfied 
by the linear array indexing without looking up the object hash-
table; hence the access time can be reduced. 

Different from other JavaScript engines, TypeCastor represents 
one linear array with a few Java-style scalar arrays. One of the 
scalar arrays records the types of the array elements (called type 
array), and each of the rest scalar arrays (called value arrays) 
only stores the array elements of one type. When a dense array 
is initialized, two scalar arrays are allocated: One is the type 
array, and the other is the value array of certain initial type (e.g., 
array of numbers). The initial type is predicted by the type 

Generated code for list[i].price: 
1: properties = list[i].properties; 

2: cached_index = cache[2].Index; 

3: if (properties.length > cached_index && 

4:   properties[cached_index].name == “price”) { 

5:   Load properties[cached_index].value; 

6: } else { //slow path 

7:   Iterate the name list and update the cache 

8: } 

Source code: 

1: for(var i = 0; i < 100;i++){ 

2:   sum += list[i].price; 

3: } 

name 
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Figure 4. Illustration of position inline caching 
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analysis. Essentially, TypeCastor predicts that all the elements in 
the linear array have the same type. Since the prediction can be 
wrong, at runtime if a new type is detected for an element, a new 
value array will be allocated to store the value of that new type. 
In the worst case, totally four scalar arrays can be used, i.e., type 
array, value arrays of number, string and object reference. The 
assumption is, in most cases, only one value array is needed. 
Our experiments confirm this assumption with SunSpider 
benchmark. That is, in most cases, the first two scalar arrays (the 
type array and value array) are enough throughout the program 
execution. Using scalar array instead of object reference array 
can eliminate a memory indirect reference when accessing array 
element, since the element value can be directly retrieved from 
the value array. 

In case the initial length of the linear array is not enough, 
TypeCastor can dynamically adjust the length of the linear array 
by maintaining an array utilization ratio, i.e., the ratio between 
the number of occupied entries and the linear array length. 
Every time when the code needs to access a new element that is 
out of the range of the linear array, the utilization ratio is 
evaluated. If it is not big enough (< 50% in our setting), the new 
element is stored in the hash-table as usual. Otherwise, the linear 
array is expanded to double length to accommodate more 
elements. In our implementation, the initial array length is 32. 

6.2 Scope-based data localization 
JavaScript has a special kind of objects called “scope” objects. 
A scope object is created every time a function is called or a 
“with” statement is executed. It is eliminated when the function 
returns or the “with” statement finishes. Every variable of the 
function is treated as a property of the scope object of that 
function.  

TypeCastor tries to allocate the data structures associated with 
the variables on runtime stack whenever possible. This has three 
benefits: 

� Reduce the memory management overhead of those data 
structure; 

� Optimize the data accesses in runtime stack; 
� Eliminate the unnecessary scope objects.  

TypeCastor does scope-based data localization as follows. A 
scope-tree based algorithm is implemented to determine if a 
variable is scope local or function local. The algorithm scans the 
CFG in each scope in a bottom-up way along the scope-tree. If 
there is no “closure” or “eval” function call in current or child 
scopes, all the variables in current scope object are scope-local. 
If the scope local variables are not used in the code of any child 
scopes, the variables are function-local. Both scope-local and 
function-local variables can be localized, i.e., allocated on the 
runtime stack.  

7. Experimental evaluations  
SunSpider JavaScript benchmark is used to evaluate the 
techniques we develop in TypeCastor. It is an industry standard 
benchmark suite provided by Webkit. The benchmark is focused 
on the tasks in 3D rendering, bit-bashing, cryptographic 

encoding, code decompression, math kernels, and string 
processing1. 

Apache Harmony �[18]  is used as the second phase runtime 
engine of TypeCastor to run the bytecode IR files generated 
from the static compilation phase. The platform we use is Intel 
Core2 Quad with 4 GB RAM, running Microsoft Windows XP 
SP3. All the “average” data below are arithmetic mean. 

7.1 Speedups of the optimization techniques 
We conduct more experiments to understand the effects of 
TypeCastor optimization techniques. 
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Figure 5 shows the breakdown of the performance gains from 
different optimizations: type inference, type prediction, inline 
caching and the rest. The inline caching includes both the 
position and prototype inline caching mechanisms.  

From the data we find that the type prediction optimization is 
the biggest contributor in ten of the 17 benchmarks. This means 
type prediction does a very good job for the variables whose 
types are not statically inferable. Based on this observation, it is 
fair to expect a more complex inference algorithm to infer more 
types. But if we consider that the extra runtime overhead of a 
predicted type compared to an inferred type is only a compare-
and-branch operation, it might be acceptable to trade the highly 
complex type inference for a simple but highly accurate type 
prediction.  

From the data we also find that type inference optimization is 
the biggest contributor in five benchmarks. A closer look at 
those benchmarks exposes that four of them are integer 
benchmarks with mainly bit operations. This means type 
inference works extremely well for bit operations. Overall, 15 of 
the 16 benchmarks get their major speedups from type analysis 
based optimizations. In the total performance gain, 98% of it is 
obtained from type analysis based optimizations. This probably 

                                                           
 

1  We exclude the string processing applications in our 
evaluation, because TypeCastor does not have regular 
expression support at the moment. 

Figure 5. Speedups breakdown for optimizations 



 

 

suggests that, static analysis can play an important role in 
dynamic languages.  

Note that inline caching is the biggest speedup contributor for 
one benchmark. It contributes 31% speedup in average to the 
benchmark suite, which accounts for more than 1% of the 
overall performance gain. The rest memory optimizations 
contribute another 1% to the total performance gain.  

7.2 Coverage of type analysis 
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In order to have a better understanding on the type dynamism, 
we collect all the real type access instances at runtime, and 
measure how many of the type instances can be inferred or 
predicted by TypeCastor. Figure 6 shows the coverage of the 
successfully inferred and correctly predicted type instances in all 
the type access instances. We find that type inference covers 
63%, and type prediction correctly predicts 36%. Together, type 
analysis in TypeCastor successfully identified 99% of all 
runtime type access instances. This means that dynamic typing 
is not that dynamic as people expect. At the same time, the data 
suggests that the type analysis algorithm of TypeCastor is highly 
effective, and the type inference and prediction are very well 
complementary.  

It is worth noting that all the types of bitops-bitwise-and 
benchmark can be inferred. Examining the source code reveals 
that there is no property access in the benchmark. This explains 
why TypeCastor can achieve dramatically better performance 
than v8 (explained later), which does not have similar type 
inference. 

7.3 Hit ratio of inline caching 
In order to understand the object dynamism, we collect the 
cache hit ratio of the inline caching optimizations in TypeCastor, 
i.e., how accurate the object property lookups can be predicted. 
The scalar benchmarks that do not have lots of object property 
accesses are excluded since they are not representative for the 
evaluation.  

Figure 7 shows the hit ratio data for all the property lookup 
instances. We find that position inline caching achieves 
excellent hit ratio (95.2%) in average. Naturally it contributes 
most in speeding up the property accesses. 

 
Together with prototype inline caching, close to 100% cache hit 
ratio (99.9%) is achieved in average excluding benchmark 
access-binary-trees.js. The reason for the relatively low hit ratio 
(63%) in access-binary-trees.js is that, many of its property 
accesses are write operations that produce new properties. These 
operations cannot hit in cache because the properties are not 
existent yet at the writing time. It worth noting that the behavior 
of inline caching in TypeCastor is quite similar to that of cache 
hierarchy in microprocessor architecture: Most of the accesses 
hit in first level cache, and almost all the accesses can be 
satisfied by the two-level cache. Hardware acceleration for 
JavaScript property access might be able to learn from the 
traditional cache design. 

7.4 Overall performance results 
Although we develop the TypeCastor techniques to demystify 
the dynamic typing behavior, it is still interesting to look at its 
pure performance with the benchmark. The data are not 
supposed to be interpreted as a quality judgment of the 
JavaScript engines. We only want to show how further we can 
go with the techniques in controlling the dynamism. 

 

We run the benchmark with three engines: TypeCastor, 
TraceMonkey and Chrome V8. Figure 8 shows the 
improvements achieved by TypeCastor against TraceMonkey 
and V8. We can find that TypeCastor performs slightly better 

Figure 7. Hit ratios of inline caching 
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Figure 8. Comparison to V8 and TraceMonkey 
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than V8 and TraceMonkey, with 5.6% and 12.7% average 
speedups respectively. TypeCastor has best performance for four 
of the 16 benchmarks.  

It is interesting that V8 obviously does not perform well with 
bitops-bitwise-and application compared to TypeCastor and 
TraceMonkey. If without this application, V8 should have much 
better average performance than TypeCastor. As we have 
already described, TypeCastor can infer all the types of bitops-
bitwise-and. We guess TraceMonkey can identify all the types 
as well by type tracing, while V8 cannot due to the lack of 
similar type analysis or type tracing. 

8. Discussion and future work 
This paper describes the techniques we develop in TypeCastor 
to demystify the dynamism of JavaScript language. Since our 
focus is not the ultimate performance, we do not fine tune the 
optimizations, and we do not develop more optimizations. 

In our evaluation, we find that most of the type access instances 
can be statically analyzed in the compilation time. We 
demonstrate that type analysis can play a critical role for 
JavaScript performance improvement. For object property 
access, we propose new inline caching mechanisms that are 
more capable than the traditional ones. When the position and 
prototype inline caching mechanisms work together, most of the 
object property lookups can be satisfied by the cache. As a side 
effect, when we apply the techniques to TypeCastor, it achieves 
best performance among the known engines when evaluated 
with SunSpider benchmark.  

Although the results look promising, there are limitations in our 
work.  

Firstly it is not a complete JavaScript engine. For example, 
TypeCastor does not support DOM, hence cannot work with a 
real browser. It is unknown how our analysis techniques perform 
when applied to real web workloads.  

Secondly we do not know if the well-recognized SunSpider 
benchmark is really representative for JavaScript’s dynamic 
typing behavior. For example, we find the inline caching 
techniques we develop already satisfy most of the property 
lookups, which means the object type analysis is not critical for 
SunSpider’s performance. But it does not necessarily mean that 
the object type analysis is not important for other web 
workloads.  

Finally, we do not know if our techniques can be easily 
integrated to other known JavaScript engines such as V8 or 
TraceMonkey. This is one of the major areas we are looking at 
recently. 

For next step, we plan to do following things. We will evaluate 
our techniques with more workloads. At the same time, we plan 
to introduce more traditional complier analysis and 
optimizations into the engine, assuming the dynamism is 
reduced largely by our techniques. The other area to look at is 
how to apply our technique into existing engines. It is also 
interesting is to see the tradeoffs between the static compilation 
and the runtime engine execution.  
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Appendix 
Table 3.  Expression based set constraints for JavaScript. 

The first column “Expression” has the operation definitions. The second column “Result typing rule” gives the constraints for result 
operand, and the third column (with two sub-columns) “Operand typing rule” gives the constraints for source operand(s). 
Notations: 

1. e,e1,e2,… : expressions. 
2. p,p1,p2,…: property names. 
3. a1,a2,…: formal argument names.  
4. v: variable names. 
5. T(e): the type set of the expression. 
6. U: Set of all possible types. 
7. JSObject: JavaScript object. 

Expression Result typing rule Operand typing rule 
c (constant) T(c) c U 
v (variable) T(v) v U 

e {JSObject} 
new e(e1,e2,…) {JSObject} 

e1,e2,… U 
this {JSObject}   

{p1:e1,p2:e2,pn:en} {JSObject} e1, e2… U 
function (a1,a2,…){s} {JSObject}   

e.p U e {JSObject} 
e {JSObject} 

e[e1] U 
e1 {Number} 
e {JSObject} 

e(e1,e2,…) U 
e1,e2,… U 

v++/v--/++v/--v {Number} T(v)={Number} v {Number} 
+e/-e/~e/ e++/e--/++e/--e {Number} e {Number} 

!e {Boolean} e {Boolean} 
delete e.p {Boolean} e {JSObject} 

e {JSObject} 
delete e[e1] {Boolean} 

e1 {Number} 
e1 {Number} {e1 op e2 | op∈{-, *, /, %, 

<<, >>, >>>, |, &, ^}} 
{Number} 

e2 {Number} 

e1 {String}    if T(e2) = {String} 
{Number}  otherwise {e1 op e2 | op∈{<, <=, >, 

>= }} 
{Boolean} 

e2 {String}    if T(e1) = {String} 
{Number}  otherwise 

e1 T(e2)      if T(e2)!= U 
{Number}  otherwise {e1 op e2 op∈{==, ===, 

!==, != }} 
{Boolean} 

e2 T(e1)      if T(e1)!= U 
{Number}  otherwise 

e1 {String} 
e1 in e2 {Boolean} 

e2 {JSObject} 
e1 {JSObject} 

e1 instanceof e2 {Boolean} 
e2 {JSObject} 



 

 

e1 {String}    if T(e2)= {String} 
{Number}  otherwise 

e1 + e2 

{String}        if  T(e1) = {String}  or 
         T(e2) = {String} 

{Number}      if  {String} ⊄ (T(e1)� T(e2))  
       and    

              {JSObject} ⊄ (T(e1)� T(e2)) 
{Number, String}  otherwise 

e2 {String}    if T(e1) = {String} 
{Number}  otherwise 

e1 {Boolean} 
e1 && e2 (T(e1) – {JSObject})� T(e2) 

e2 {Boolean} 
e1 {Boolean} 

e1 || e2 (T(e1) – {Null, Undefined})� T(e2) 
e2 {Boolean} 
e1 {Boolean} 
e2 {Number} e1 ?e2 : e3 

T(e2)           if T(e1)={JSObject} 

T(e3)           if T(e1) ⊆ {Undefined, Null} 
T(e2)� T(e3)    otherwise e3 {Number} 

e1 U 
e1,e2 T(e2) 

e2 U 
v=e1 T(e1) T(v) = T(e1) e1 U 

e {JSObject} 
e.p=e1 T(e1) 

e1 U 
e {JSObject} 

e1 {Number} e[e1] = e2 T(e2) 
e2 U 

 
Code A:  Revised bubble sorting algorithm  

 
1. var ELEMENT_CNT = 4000; 
2. var TOTAL_LOOP_CNT = 100; 
3. var list; 
4. for(var i = 0;i < TOTAL_LOOP_CNT;i++){//LOOP1 
5.   list = new Array(ELEMENT_CNT); 
6.   var n = list.length; 
7.   for(var i = 0; i < ELEMENT_CNT; i++) {//LOOP2 
8.     list[i].value = Math.random(); 
9.     if(rand_integer() % 2 == 0) { 
10.       list[i].is_even = true; 
11.     } else { 
12.       list[i].is_odd = true; 
13.     }   
14.   } 
15.   for(var i = 0;i < n;i++) {//LOOP3 
16.     for(var j = n - 2; j >= i;j--) {//LOOP4 
17.       var x = list[j]; 
18.       var y = list[j + 1]; 
19.       if(x.value > y.value) { 
20.          list[j] = y; 
21.          list[j + 1] = x; 
22. }}}} 


