

TypeCastor: Demystify Dynamic Typing of JavaScript
Applications

 Shisheng Li
China Runtime Tech Center

Intel China Research Center

Beijing, China

shisheng.li@intel.com

Buqi Cheng
China Runtime Tech Center

Intel China Research Center

Beijing, China

bu.qi.cheng @intel.com

Xiao-Feng Li
China Runtime Tech Center

Intel China Research Center

Beijing, China

xiao.feng.li@intel.com

Abstract
Dynamic typing is a barrier for JavaScript applications to
achieve high performance. Compared with statically typed
languages, the major overhead of dynamic typing comes from
runtime type resolution and runtime property lookup. Common
folks’ belief is that the traditional static compilation techniques
are no longer effective for dynamic languages. The best known
JavaScript engines such as Mozilla TraceMonkey and Chrome
V8 have developed non-traditional techniques to reduce the
runtime overhead. This paper describes TypeCastor, a new
JavaScript engine that tries to investigate where and how much
the dynamism really is in JavaScript applications, thus to
demystify their dynamic typing behavior. To verify our findings,
we evaluate TypeCastor with SunSpider benchmark. For type
resolution, we find 99% of all the primitive type instances can
be statically identified before the program execution. For object
property lookup, more than 97% of all runtime property accesses
can be satisfied by inline cache. These data mean that the
representative JavaScript applications are not that dynamic as
people expect, although the language provides the flexible
dynamism supports. Though not developed for pure
performance, TypeCastor achieves 5.6% and 12.7% higher
scores compared to current Chrome V8 and Mozilla
TraceMonkey engines respectively.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors---
optimization, runtime environments

General Terms
Algorithms, Performance

Keywords
Dynamic typing, JavaScript, type analysis, inline caching

1. Introduction
JavaScript is a popular programming language for client-side
web development. Many popular applications, such as Google
Desktop Gadgets, Adobe’s Flash, and the latest HTML5

standard, use JavaScript as the development language. The
flexibility and expressiveness make it easy for web designers to
work with. Dynamic typing is one of its major enabling factors.

However, dynamic typing can degrade the performance of the
programs. This drawback could impact JavaScript language’s
applicability in computation intensive applications, which are
increasingly common in new web applications. Hence some big
industry players remain using statically typed languages for their
web applications.

The overhead of dynamic typing comes mainly from the runtime
type resolution and runtime property lookup. The community
has developed various optimization techniques to solve the
performance problem. The techniques mainly include type
inference, type specialization, and inline caching. Type
inference identifies the variable types based on program analysis
or a type system summarized from the language. Type
specialization tries to speculate on the variables types based on
the runtime type profiling. Inline caching records the results of
previous property lookups at the call site, assuming that the
objects types are not changed frequently.

The common folks’ belief is that JavaScript applications are
quite dynamic at runtime hence the traditional compilation
techniques may no longer be effective. In this paper, we try to
demystify the dynamic behavior of JavaScript programs by
identifying where and how much the dynamism really is. The
main contributions of the paper include:

1. We design an effective and efficient type analysis algorithm
that speeds up the variable type resolution. Type inference and
type prediction can be applied to the program variables during
the analysis. In our evaluation with SunSpider benchmark, more
than 99% of all the primitive type instances can be correctly
identified. This finding is significantly different from the
traditional impression on the type dynamism of JavaScript
programs.

2. We propose “position inline caching” mechanism to speed up
the object property access. Different from other inline caching
techniques, position inline caching can improve the property
access even if the object type is changed at runtime. In our
evaluation with SunSpider benchmark, among all the runtime
property access instances, 97% of them can successfully hit in
the cache. This finding is also different from the traditional
impression on the object dynamism of JavaScript programs.

3. We develop the TypeCastor JavaScript engine from the
scratch and validate our findings with SunSpider benchmark.
Although it is not designed for absolute performance,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HiPEAC2011, Heraklion, Crete, Greece.
Copyright 2011 ACM 978-1-4503-0241-8/11/01 ...$10.00.

TypeCastor gets 5.6% and 12.7% higher scores compared to
Chrome V8 and Mozilla TraceMonkey engines respectively.

The paper is organized as follows. Section 2 discusses the
related work. Section 3 describes the infrastructure of
TypeCastor engine. Section 4 introduces TypeCastor type
analysis algorithm and the associated optimizations. Section 5
presents TypeCastor inline caching mechanisms. Section 6
introduces the developed memory optimizations. Section 7
analyzes JavaScript dynamism in SunSpider benchmark with
TypeCastor. Section 8 summarizes the paper and discusses
future work.

2. Related work
Thiemann �[1] proposes a type system to check JavaScript
programs statically. It is focused on the type system design and
soundness proof. In later work, Heidegger and Thiemann �[7]
propose a recency-based type system and sketch an inference
algorithm in the system. The usage of the recency abstractions
�[8] for the objects turns the weak object updates in the
JavaScript program into strong updates, and increases the
analysis accuracy significantly �[3] .

Anderson et al �[2] design a type system with an inference
algorithm for the primitive subset of the JavaScript types. The
type system allows objects to be inferred in a controlled manner
by classifying the properties as being definite or potential. Their
system does not model type change, and the transition between
the presence and absence of a property is harder to be predicted
than in a recency-based system.

Jang and Choe �[9] develop a point-to analysis for JavaScript to
enable some program optimizations. They demonstrate their
result by applying partial redundancy elimination to the property
references. The analysis is flow and context insensitive, and is
limited to a subset first-order language.

Jensen et al �[3] introduce a lattice model for the static type
analysis of the full JavaScript language. Recency abstraction is
used for the type representation in the analysis. The algorithm
complexity is high in modeling object property.

Chrome V8 �[5] is a high performance JavaScript engine
developed by Google. Hidden class and method inline caching
are the major optimization techniques. Hidden class uses a
common data structure to represent the type of the objects that
have same properties.

Apple’s JavaScript engine SFX (SquirrelFish Extreme) �[10]
compiles JavaScript code into intermediate bytecode sequence
and then interprets the sequence with context-threaded JIT. It
develops polymorphic inline caching to speed up the property
access. The StructureID �[10] concept for inline caching is
similar to the hidden class of Chrome V8.

Mozilla TraceMonkey �[6] is a trace-JIT extension to
SpiderMonkey JavaScript engine �[12] . It profiles the program at
runtime and identifies the hot traces for cross-procedural type
specialization. “Shape” object �[19] is used to represent the
object type to speed up the property access.

Mozilla Rhino �[4] is a JavaScript engine written in Java. It
compiles the scripts into Java class files and runs them on a

JVM. Rhino’s performance is obviously lower than Chrome V8
and Mozilla TraceMonkey in our evaluations with SunSpider
benchmark.

3. TypeCastor design overview
We develop TypeCastor to demystify the dynamic behavior of
JavaScript program. We also want to understand the
implications of dynamic typing and object inheritance to
compiler design. To serve the purpose, a phased compilation and
optimization model is used in TypeCastor. In the first phase, the
high level and sophisticated optimizations are performed with
static compilation. In the second phase, the low level and
platform specific optimizations are conducted at runtime in an
execution engine. The first phase generates statically typed
intermediate representation (IR), thus in the second phase a
traditional runtime engine such as JVM can be used.

This infrastructure design has following advantages. Firstly, it
enables both ahead-of-time (the first phase) and just-in-time (the
second phase) compilations, so that we have opportunity to
tradeoff the merits and drawbacks between the phases.
Secondly, the design does not lose any benefits of type safety
and program portability of JavaScript, because the second phase
only accepts type safe IR. As a natural result, TypeCastor can be
easily ported to other runtime systems. Thirdly, this design
matches well with current web-service computing model, where
the computation is partitioned between the server and client. In
our implementation, we choose Java bytecode as the TypeCastor
IR for convenience since it is well designed and we have a
runtime engine developed for it already.

Figure 1 illustrates the static compilation part of the TypeCastor
framework. In Step 1, the JavaScript source code is transformed
into AST and the corresponding control flow graph (CFG). Then
in the followed steps, TypeCastor conducts a few analyses and
optimizations to tackle the dynamism of JavaScript language.
Step 2 (type inference and prediction) and Step 3 (type
specialization and scalar representation) are analyses and
optimizations for variable type resolution. Step 4 (inline
caching) is optimization for object property lookup. Step 5
(dense array optimization and scope localization) are memory

AST

CFG

Step1: Lexical and
syntactic analysis

Step3: Type specialization
and Scalar representation

Step2: Type inference and
prediction

Step4: Inline caching

Step5: Dense array opt.
and scope localization

Step6: Traditional
compiler opt. CSE DCE

Step7: Bytecode IR
generation

JavaScript

source code

IR Files

Figure 1. Framework of TypeCastor

optimizations for special objects’ property access. Before
emitting bytecode IR in Step 7, TypeCastor conducts simple
traditional optimizations (CSE and DCE) in Step 6 to reduce the
redundancy in the data and code.

4. Type analysis to reduce type resolution
overhead

The type analysis in TypeCastor tries to infer the primitive types
of the variables before the program execution. For a variable
whose type cannot be inferred exactly, TypeCastor predicts its
most possible type. Based on the type analysis result, the
optimizations like type specialization and scalar representation
are applied.

4.1 Constraints for type analysis
TypeCastor develops a constraint-based type analysis algorithm.
We extract the expression-based set constraints �[13] from the
JavaScript language specification �[14] , and then use the
constraints as the typing rules in the analysis.

Based on the nature of JavaScript language, we divide the
expression-level rules into two kinds: type inference rules for
result variables and type prediction rules for operand variables.
(Table 3 in Appendix gives the concrete constrains for all the
expressions in JavaScript.)

An observation of JavaScript language is that, the result type is
mostly static, without any runtime dynamism. For example, the
result type of “delete” operation is known to be always Boolean.
For a few cases where the result type is not statically defined,
such as “add” operation, the type still can be inferred from the
source operand types.

As a comparison, the types of source operands are usually
ambiguous in compilation time. TypeCastor tries to predict their
types by using available type information in the expression and
by applying best guess based on the common programming
practice. For example, if “a” is known to have string type in
expression “a + b”, TypeCastor predicts that it is highly possible
for “b” to have string type as well. This is reflected in the
operand typing rule for “e1 + e2”: “e2’s type set is {String} if
e1’s type set is {String}”.

TypeCastor performs type analysis for all the variables with
possible types of “Undefined, Null, Boolean, Number, String,
JSObject”. This is different from all other known JavaScript
type analyses �[4] �[5] �[6] , which only distinguish the Number
type and non-Number type, without telling the exact primitive
types of those non-Number variables. In our evaluation with
SunSpider benchmark, the non-Number primitive types cover
31% of all the type instances; thus it is highly useful to refine
their types with extra details.

TypeCastor gives all the objects same type JSObject without
further analyzing different object types. We try to get the same
benefit with inline caching optimizations. We believe this is a
good design tradeoff between cost and benefit. Complete type
inference for objects is a NP-complete problem, and at least
O(n³) complexity is required for a reasonable analysis �[16] .
Simon Holm et al �[3] show that the algorithm complexity of a
context-sensitive object type analysis is much bigger than that of
primitive types’ analysis. The reason is that, any difference in
the object properties or the scope chains makes different object

types, and they can be dynamically generated. As a contrast,
there are only a few definite primitive types in JavaScript.

4.2 Flow-sensitive type analysis
TypeCastor performs function-level type analysis by
propagating the expression-level type information along the
CFG. The function-level analysis achieves both bigger coverage
and higher accuracy. The analysis algorithm in TypeCastor is
intra-procedural and flow-sensitive. It has two passes. A forward
pass propagates the expressive-level inferred types to the entire
function, along the define-use chains of the variables; and a
backward pass propagates the predicted types along the use-
define relations.

In the analysis, type sets will used because a variable may have
multiple inferred or predicted types in a function. Although a
variable can have a single inferred type at a certain program
location, it may have different inferred types at different
locations. Meanwhile, a variable can have more than one
possible type at one program location, either because the type
can dynamically change at runtime, or because the type cannot
be identified statically by the algorithm. So type set is an
appropriate data structure for the analysis.

In the analysis, every variable will be associated with two kinds
of type sets. One kind is local type set and the other is global
type set. The local type sets are used for computation
optimizations. A local type set of a variable v has all the possible
types of v at a specific program location. For a single variable v
at statement s, there are two local type sets: the local inference
set (T(S)[v]) and the local prediction set (PT(S)[v]). The global
type sets are used for storage optimization. A global type set of a
variable v contains all the possible types of v at different
locations of a function. Every variable v in the function has two
global type sets: the global inference type set (GT[v]) and the
global prediction type set (GPT[v]). Equations (1) to (7) denote
how TypeCastor’s local type analysis works in a basic block. In
the analysis, local type sets are calculated according to equations
(1) to (5), and global type sets are calculated by equations (6)
and (7).

)(_)(_)(_)(STcgSTkillSTinST +−= (1)
)(_)(_)(_)(SPTcgSPTckSPTinSPT +−= (2)

ØØ
)(_)(

�
�
� =∧=Ω

= ∈ otherwise]gen_T(S)[v

]gen_T(S)[vv] in_T(S)[
STcg SVv�

 (3)

])[(_)(_])[()(vSPTgenSPTcg vSTSVv ∈Ω∧∈= � (4)

�
�
�

∈Ω
∉Ω

= ∈
])[(])[(_

])[(])[(_
)(_)(vSTvSPTkill

vSTvSPTin
SPTck SVv�

 (5)

)(_)()(STgenVGTVGT �=

(6)

)(_)()(SPTcgVGPTVGPT �= (7)
In the equations, the type sets of all variables at statement S
constitute two type sets collections: the local inference type sets
collection (T(S)) and the local prediction type sets collection
(PT(S)), so that the type sets can be propagated inner the basic
block. in_T(S) and in_PT(S) are the type sets propagated from
the previous statements (For type prediction, the previous
statements are the statements before current one in reversed
execution order). For the type set analysis inner a statement S,
gen_T(S)[v] and gen_PT(S)[v] are used to represent the type
sets which are generated by the expression-level type inference
rules for the variable v; kill_T(S) and kill_PT(S)[v] are the types
sets of variables(or variable v) inferred and predicted before S

that are also inferred and predicted in S; V(S) is the variable set
used in the statement and V represents all variables in the
function. In the equations, Ø represents the empty type set. For
the variables which are not used in the statement, their generated
and killed type sets will all be Ø.

Equations (3), (4) and (5) denote how the inferred type sets
(cg_T(S)), predicted type sets (cg_PT(S)) and killed predicted
type sets (ck_PT(S)) are calculated for each statement S.
Different with the type inference, type prediction can only be
applied to the variables that have no inferred type set before it is
used. At the same time, different execution paths may lead to
different variable type sets in the flow sensitive analysis. These
problems bring about the requirement to trace the un-inferable
variable type in the analysis. In the equations, � is a new type
defined to trace the un-inferable variable type. It means that a
variable’s type which can be any JavaScript primitive type. In
type inference pass, if a variable’s type cannot be inferred along
an incoming path, it will have a type � in its inferred type set. In
the type prediction pass, type prediction will only be applied to
the variable with � in its inferred type set.

 in statement last theis)()(_ BBSSTBBTout = (8)

)(_)(_)(PToutBBTin BBpredp∈= � (9)

 of statement first theis)()(_ BBSSPTBBPTout = (10)

)(_)(_)(PPToutBBPTin BBsuccessp∈= � (11)

Based on the local type analysis result, global flow sensitive
type analysis can be applied to propagate the type information
and improve the accuracy of the analysis. To facilitate the
analysis, every basic block has live-in/live-out type sets for
every variable, including the live-in/live-out inference sets
(in_T(v), out_T(v)) and the live-in/live-out prediction sets
(in_PT(v), out_PT(v)). Different with traditional data flow
analysis, in the type flow analysis, the live-out type sets of a
statement will change according to the change of live-in type
sets. So, the type sets of last statement in local type analysis will
be live-out type set of the basic block.

The flow equations from (8) to (11) denote the transfer functions
used in global type flow analysis. The analysis scans code along
the CFG and does the local type analysis and propagates the
generated type sets block by block according to these equations.
During the CFG scanning, the analysis algorithm checks if the
traversal should proceed with current control flow path (or
branch) at the entry of every basic block. When a new live-in
sets is calculated for a basic block, the algorithm checks if the
new live-in set is the same as the block’s original live-in set (i.e.,
in_T(BB) in the forward pass, or in_PT(BB) in the backward
pass). If the live-in sets are different, meaning there are some
changes in the variables identified types, the algorithm should
continue to analyze the current block. Otherwise, the traversal
skips it, and proceeds with the remaining branches. When there
is no other branch, this pass terminates.

Table 1 and 2 show how the global type analysis algorithm
works on the example in Figure 2. Table 1 presents the process
of type inference. Table 2 presents the process of type
prediction. To simplify the processes, in our example, each basic
block contains single statement, and the live-in/live-out type sets
of a basic block equal to the corresponding type sets of the
statement in it. From the processes, we can find that: 1) The type

of c variable in BB6 will not be predicted due to its inferred
type; 2) The type of a variable in BB2 and BB3 will be predicted
because there is a path from entry in which the type of the
variable cannot be inferred.

Table 1. Type inference process

Table 2. Type prediction process

Since there are only a handful of primitive types, the number of
all different sets under union operation is a small constant. The
termination condition of the algorithm checks for the live-in
type sets difference. This means the algorithm always converges
in O(nm) time, where n is the number of the basic blocks in the
CFG and m is the number of variables.

Compared to the type analysis methods developed in other
JavaScript type checking tools or JavaScript engines, the
TypeCastor algorithm is simpler because it does not distinguish
different object types. But it is effective enough in our
evaluation. The result shows that statically inferred and correctly
predicted type instances can cover more than 99% of all the
primitive type instances in the SunSpider benchmark.

Basic
block

cg_T Kill_T In_T Out_T

0 {{�}, Ø} {Ø , Ø} {Ø, Ø} {{�}, Ø }
1 {Ø , {Num}} {Ø , Ø} {{�}, Ø} {{�}, {Num}}
2 {{�} , Ø} {Ø , Ø} {{�} , {Num}} {{�}, {Num}}
3 {{�} , Ø} {Ø , Ø} {{�} , {Num}} {{�}, {Num}}
4 {Ø , {Num}} {Ø , {Num}} {{�} , {Num}} {{�} , {Num}}
5 {{Num}, Ø} {{�} , Ø} {{�} , {Num}} {{Num}, {Num}}
2 {{�} , Ø} {Ø, Ø} {{Num}, {Num}} {{Num,{�}}, {Num}}
3 {{�} , Ø} {Ø, Ø} {{Num,{�}}, {Num}} {{Num,�}}, {Num}}
4 {Ø , {Num}} {Ø, {Num}} {{Num,{�}}, {Num}} {{Num,{�}}, {Num}}
5 {{Num}, Ø} {{Num,{�}}, Ø} {{Num,{�}}, {Num}} {{Num}, {Num}}
6 {Ø, �} {Ø, Ø} {{Num}, {Num}} {{Num}, {Num}}

Basic
block

cg_PT cg_PT In_PT Out_PT

6 { Ø, Ø} { Ø, Ø } { Ø, Ø } { Ø, Ø }
5 { Ø, Ø } { Ø, Ø } { Ø, Ø } { Ø, Ø }
4 { Ø, Ø } { Ø, Ø } { Ø, Ø } { Ø, Ø }
3 {{Num}, Ø } { Ø, Ø } { Ø, Ø } {{Num}, Ø }
2 {{Num}, Ø } {{Num}, Ø } {{Num}, Ø} {{Num}, Ø }
5 { Ø, Ø } {{Num}, Ø } {{Num}, Ø } { Ø, Ø }
1 { Ø, Ø } { Ø, Ø } {{Num}, Ø } {{Num}, Ø }
0 { Ø, Ø } { Ø, Ø } {{Num}, Ø } {{Num}, Ø }

Source code:

function get_bit_cnt(a) {

var c = 0;

 while (a != 0) {

 if (a & 1)

c++;

a >>= 1;

}

 return "Result is " + c;

}

a&1!=0

a != 0

a >>=1;

c = 0;

c++;

BB1

BB2

BB3

BB4

BB5

"Result is "+c; BB6

Entry BB0

Figure 2. Example of global type analysis

CFG:

4.3 Type analysis based optimizations
Based on the result of type analysis, TypeCastor applied two
optimizations to reduce the overhead introduced by dynamic
typing. They are static type specialization and scalar
representation.

4.3.1 Static type specialization
Type specialization is commonly used in current JavaScript
engines to optimize the execution �[17] . In other known engines,
type specialization is mostly based on runtime type profiling,
while in TypeCastor it is based on the static type analysis result.
If the type analysis is accurate enough, TypeCastor can avoid
the profiling overhead without losing any benefits of the
dynamic type specialization. Nonetheless, the two approaches
are complementary, i.e., the static type specialization does not
exclude the application of dynamic type specialization.

In TypeCastor, type specialization is used for both inferred and
predicted types. Since the inferred types are exact at certain
program locations, TypeCastor directly generates code for the
inferred types. When a variable’s inferred types are different at
different program locations, the code for type conversion is
added before the second access instance. For the predicted types,
TypeCastor generates two paths for the same piece of code: One
is the fast path specialized with the predicted type and the other
is the slow path in case the prediction is wrong.

Figure 3 shows an example of type specialization in pseudo-
code. In the example, ‘x’ is predicted to have string type. The
generated code firstly compares the type of ‘x’ with string type.
If the check returns true, the code takes the fast path and loads
the string directly. Otherwise it goes to the slow path, where a
string conversion is needed before the string loading.

4.3.2 Scalar representation
Since the type of a variable is dynamic at runtime, most
JavaScript engines �[4] �[5] �[6] use heap data structure to
represent the variable. This is simple for the implementation, but
has performance impact due to the memory management and
heap access overhead. To improve it, Chrome V8 multiplexes
the object reference representation for integer values, and
TraceMonkey uses unboxing technique when appropriate.

Different from the others, TypeCastor tries to use scalars to
represent JavaScript variables directly. It works in this way:

For a local variable whose type can be statically inferred at
certain program location, a scalar is used to represent the

variable at that location. Note that different locations may access
different scalars of the same variable because it may have
different inferred types at different locations.

For a local variable whose types are predicted, TypeCastor
generates scalars for it in the same way as for type-inferred
variables except that, the allocated space for the variable should
be able to hold a type tag and an object reference so that the
variable can be represented by a heap data structure in case the
prediction is wrong.

For a global variable accessed only in leaf functions, TypeCastor
applies the unboxing technique as well as other engines do.

The scalar representation in TypeCastor reduces the amount of
memory dereferences dramatically, because the scalars can be
largely allocated in the registers by the compiler.

5. Inline caching to reduce property lookup
overhead

In JavaScript, an object is actually a mapping from its property
names to its property values. New object is created through
object inheritance (or called “object cloning” in some
literatures). The properties of an object can be dynamically
added or removed. Due to the dynamism, object property access
is usually slow in JavaScript, since the runtime physical position
of a property is hard to determine in the compilation time. Inline
caching is commonly used to speed up the property access.
Assuming that the object type is not changed frequently, the
property related info can be cached in a data buffer or be
embedded in code at the access spot (with self-modifying
technique) to speed up the property access [4][5][6][10].

Guarding code is needed to ensure the correctness when the
cached info is no longer valid. In current known inline caching
solutions, the guarding code is normally to check if the object
type is changed. Essentially all these solutions treat the property
access problem as a type resolution problem.

Different from the known solutions, TypeCastor develops two
new solutions, position inline caching and prototype inline
caching. Position inline caching treats the property access
problem as a value locating problem. It can improve the
property access even if the object type is changed at runtime.
Prototype inline caching predicts the property position in the
prototype object when the property is not overridden by the
object.

5.1 Position inline caching
In TypeCastor, an open-addressing hash-table is used to
represent an object. The property name is the hash key. When a
property is to be accessed with its name, a hashing function is
used to compute the hash-table entry number from the name
string, and then access the property value in that entry. The entry
number is the data to be cached in the mechanism, which is the
position of the property in the object hash-table. Once the
position is known, the value in that position (hash-table entry)
can be accessed directly.

Position inline caching works as follows. The cache is arranged
as an array that is indexed with the source code line number.
The array element stores the position of the object property
accessed at that line number. At runtime when the code accesses
a property with its name string, it firstly loads the property’s

Source code:
funcc add_prefix(x) {

 return "pre"+x;

}

Predicted type of x:
PT(x)= {String}

Generated code:
if(Typeof(x)==String){

//fast path

s = x.stringValue();

return “pre” + s;

}else{ //slow path

sx=ConvertToString(x);

s = sx.stringValue();

return “pre” + s;

}

Figure 3. Example of type specialization

position value from the cache. Then it loads the property’s name
string from that entry of the object, and checks if it is the
accessed property. If the check returns true, it means a cache hit
and the property value is loaded from the same entry. Otherwise,
it is a cache miss and a slow path is taken to lookup the property
in traditional way. Note that we use immutable strings in
TypeCastor to speed up the string comparison.

Figure 4 illustrates position inline caching with an example. At
line number 2 of the source code, there is a property access
list[i].price. In the object layout table, the property “price” is
stored in entry number 1, which is cached in the position cache
buffer[2]. TypeCastor generates inline caching code to access
list[i].price.

Another example can exhibit the difference between position
inline caching and other traditional mechanism. (Shown as Code
A in Appendix). The source code is an algorithm sorting an
object list. The objects initially are of same type with a property
“value”. Then two alternating properties “is_even” and “is_odd”
in the objects are initialized to mark different objects.
Traditionally the objects with “is_even” or “is_odd” are treated
as two different object types. When the code accesses the
property “value” in a loop, traditional object inline caching
mechanism does not work at all (i.e., the cache always misses)
due to the constant change of the object types (with alternating
“is_even” or “is_odd” properties.) But TypeCastor works in this
case, because the positions of the property “value” are the same
across different objects.

We use two versions of the sorting algorithm to show the
difference of Chrome V8’s hidden class and TypeCastor’s
position inline caching. Version 1 and version 2 are the same as
described above except that version 2 does not have the
properties of “is_odd” and “is_even”. We measure the
performance slowdown when running version 1 compared to
version 2. We find that, when introducing properties “is_odd”
and “is_even”, the program slows down more than 70% with
hidden class technique, while the slowdown is less than 1% with
position inline caching.

5.2 Prototype inline caching
In JavaScript language, if a prototype property of an object is
not overridden, the runtime engine needs to traverse the object
inheritance tree to find the target property. This searching
process is time consuming. TypeCastor optimizes it by caching
the prototype object reference and the property position in the
prototype. This is called “prototype inline caching”.

Prototype inline caching works in this way: When the position
inline caching described in previous subsection fails to hit in the
cache for a target property access, the code checks if the
following conditions are satisfied:

� The target property in the prototype is not overridden by
current object;

� The cached prototype is the prototype of current object;
� The cached position has the target property.

If all the checks return true, the property value can be retrieved
directly from the cached prototype property without traversing
the inheritance tree.

Prototype inline caching only works when the accessed property
is not overridden by the object. This is not a limitation but
actually a neat feature. The reason is, if the property is in the
object, position inline caching will hit in cache; otherwise,
prototype inline caching effects. These two caching mechanisms
are very well complementary. The position inline caching is like
the first-level cache in microprocessor architecture, and the
prototype inline caching is like the second-level cache. In our
evaluation, they indeed behave like the microprocessor cache
hierarchy.

6. Memory optimizations for special objects
property access

Besides the type analysis based optimizations and inline caching
optimizations, TypeCastor develops additional techniques to
further reduce the dynamic typing overhead. One is related to
array access, where traditional array layout is used to represent
JavaScript array. The other optimization is about the scope-
based data localization.

6.1 Dense array optimization
Dense array refers to the array instance whose element accesses
mostly fall into a small range of array indices. In JavaScript
language, an array is like a common object except that the
properties can be accessed with numerical index. To optimize
dense array access, a linear array (with adjacent elements in
heap) is used to represent the dense part of the array, and the
elements out of the range of the linear array are stored in a hash-
table, as usual. The linear array is a C-style reference array,
whose elements are object references pointing to the element
objects. In this way, most of the array accesses can be satisfied
by the linear array indexing without looking up the object hash-
table; hence the access time can be reduced.

Different from other JavaScript engines, TypeCastor represents
one linear array with a few Java-style scalar arrays. One of the
scalar arrays records the types of the array elements (called type
array), and each of the rest scalar arrays (called value arrays)
only stores the array elements of one type. When a dense array
is initialized, two scalar arrays are allocated: One is the type
array, and the other is the value array of certain initial type (e.g.,
array of numbers). The initial type is predicted by the type

Generated code for list[i].price:
1: properties = list[i].properties;

2: cached_index = cache[2].Index;

3: if (properties.length > cached_index &&

4: properties[cached_index].name == “price”) {

5: Load properties[cached_index].value;

6: } else { //slow path

7: Iterate the name list and update the cache

8: }

Source code:

1: for(var i = 0; i < 100;i++){

2: sum += list[i].price;

3: }

name

0 1 2 3

10 value

list[i]

cache

Position cache

2 1

1

3

Figure 4. Illustration of position inline caching

Const pool

“price”

analysis. Essentially, TypeCastor predicts that all the elements in
the linear array have the same type. Since the prediction can be
wrong, at runtime if a new type is detected for an element, a new
value array will be allocated to store the value of that new type.
In the worst case, totally four scalar arrays can be used, i.e., type
array, value arrays of number, string and object reference. The
assumption is, in most cases, only one value array is needed.
Our experiments confirm this assumption with SunSpider
benchmark. That is, in most cases, the first two scalar arrays (the
type array and value array) are enough throughout the program
execution. Using scalar array instead of object reference array
can eliminate a memory indirect reference when accessing array
element, since the element value can be directly retrieved from
the value array.

In case the initial length of the linear array is not enough,
TypeCastor can dynamically adjust the length of the linear array
by maintaining an array utilization ratio, i.e., the ratio between
the number of occupied entries and the linear array length.
Every time when the code needs to access a new element that is
out of the range of the linear array, the utilization ratio is
evaluated. If it is not big enough (< 50% in our setting), the new
element is stored in the hash-table as usual. Otherwise, the linear
array is expanded to double length to accommodate more
elements. In our implementation, the initial array length is 32.

6.2 Scope-based data localization
JavaScript has a special kind of objects called “scope” objects.
A scope object is created every time a function is called or a
“with” statement is executed. It is eliminated when the function
returns or the “with” statement finishes. Every variable of the
function is treated as a property of the scope object of that
function.

TypeCastor tries to allocate the data structures associated with
the variables on runtime stack whenever possible. This has three
benefits:

� Reduce the memory management overhead of those data
structure;

� Optimize the data accesses in runtime stack;
� Eliminate the unnecessary scope objects.

TypeCastor does scope-based data localization as follows. A
scope-tree based algorithm is implemented to determine if a
variable is scope local or function local. The algorithm scans the
CFG in each scope in a bottom-up way along the scope-tree. If
there is no “closure” or “eval” function call in current or child
scopes, all the variables in current scope object are scope-local.
If the scope local variables are not used in the code of any child
scopes, the variables are function-local. Both scope-local and
function-local variables can be localized, i.e., allocated on the
runtime stack.

7. Experimental evaluations
SunSpider JavaScript benchmark is used to evaluate the
techniques we develop in TypeCastor. It is an industry standard
benchmark suite provided by Webkit. The benchmark is focused
on the tasks in 3D rendering, bit-bashing, cryptographic

encoding, code decompression, math kernels, and string
processing1.

Apache Harmony �[18] is used as the second phase runtime
engine of TypeCastor to run the bytecode IR files generated
from the static compilation phase. The platform we use is Intel
Core2 Quad with 4 GB RAM, running Microsoft Windows XP
SP3. All the “average” data below are arithmetic mean.

7.1 Speedups of the optimization techniques
We conduct more experiments to understand the effects of
TypeCastor optimization techniques.

-50%

50%

150%

250%

350%

450%

550%

650%

a c
c e

s s
- b

i n
a r

y-
tr

e e
s .

js
ac

ce
ss

-f
a n

n
k u

c h
.j s

a c
c e

s s
- n

b
o

d y
. js

ac
ce

ss
-n

si
e v

e .
js

b
it o

p s
- 3

b
it-

b
it

s-
in

- b
y t

e .
js

b
i to

ps
-b

i t
s-

in
-b

y t
e .

js
b

ito
p s

-b
it

w
is

e-
an

d
. js

b
ito

ps
-n

si
e v

e -
b i

ts
.js

co
n

t r
o l

fl
o

w
-r

e c
u

rs
iv

e .
j s

cr
yp

to
- s

h
a1

.js
m

a t
h -

co
rd

ic
.js

m
at

h-
pa

rt
i a

l-
su

m
s .

js
m

at
h -

s p
e c

t r
al

-n
o

r m
. js

3d
-r

ay
tr

a c
e .

js
3 d

- c
u

be
.js

3d
-m

o r
p

h
.j s

A
V

E
R

A
G

E

Im
p

ro
ve

m
en

t

Type inference Type prediction
Inline caching Other optmizations

Figure 5 shows the breakdown of the performance gains from
different optimizations: type inference, type prediction, inline
caching and the rest. The inline caching includes both the
position and prototype inline caching mechanisms.

From the data we find that the type prediction optimization is
the biggest contributor in ten of the 17 benchmarks. This means
type prediction does a very good job for the variables whose
types are not statically inferable. Based on this observation, it is
fair to expect a more complex inference algorithm to infer more
types. But if we consider that the extra runtime overhead of a
predicted type compared to an inferred type is only a compare-
and-branch operation, it might be acceptable to trade the highly
complex type inference for a simple but highly accurate type
prediction.

From the data we also find that type inference optimization is
the biggest contributor in five benchmarks. A closer look at
those benchmarks exposes that four of them are integer
benchmarks with mainly bit operations. This means type
inference works extremely well for bit operations. Overall, 15 of
the 16 benchmarks get their major speedups from type analysis
based optimizations. In the total performance gain, 98% of it is
obtained from type analysis based optimizations. This probably

1 We exclude the string processing applications in our
evaluation, because TypeCastor does not have regular
expression support at the moment.

Figure 5. Speedups breakdown for optimizations

suggests that, static analysis can play an important role in
dynamic languages.

Note that inline caching is the biggest speedup contributor for
one benchmark. It contributes 31% speedup in average to the
benchmark suite, which accounts for more than 1% of the
overall performance gain. The rest memory optimizations
contribute another 1% to the total performance gain.

7.2 Coverage of type analysis

0.00%

25.00%

50.00%

75.00%

100.00%

ac
ce

ss
-b

in
a r

y -
tr

ee
s.

js
a c

c e
s s

- f
an

n
k u

ch
.js

ac
ce

ss
-n

b
o

dy
.js

a c
c e

s s
- n

s i
e v

e .
js

b
ito

p s
-3

b
i t-

b
it

s -
in

-b
yt

e.
j s

b
i to

p s
-b

i t
s-

in
-b

y t
e .

js
b

ito
ps

-b
it

w
is

e-
an

d
. js

b
i to

ps
-n

si
e v

e -
b i

ts
.js

co
n

t r
ol

fl
o

w
- r

e c
u

rs
iv

e .
js

cr
yp

to
-s

h
a1

.js
m

a t
h -

co
rd

ic
.js

m
at

h-
pa

rt
i a

l-
su

m
s.

j s
m

at
h-

sp
ec

tr
a l

-n
o

r m
.js

3 d
- r

ay
tr

ac
e.

j s
3d

-c
u

b e
. js

3 d
-m

o
r p

h
.js

A
V

E
R

A
G

E

C
o

ve
ra

g
e

Inference Prediction

In order to have a better understanding on the type dynamism,
we collect all the real type access instances at runtime, and
measure how many of the type instances can be inferred or
predicted by TypeCastor. Figure 6 shows the coverage of the
successfully inferred and correctly predicted type instances in all
the type access instances. We find that type inference covers
63%, and type prediction correctly predicts 36%. Together, type
analysis in TypeCastor successfully identified 99% of all
runtime type access instances. This means that dynamic typing
is not that dynamic as people expect. At the same time, the data
suggests that the type analysis algorithm of TypeCastor is highly
effective, and the type inference and prediction are very well
complementary.

It is worth noting that all the types of bitops-bitwise-and
benchmark can be inferred. Examining the source code reveals
that there is no property access in the benchmark. This explains
why TypeCastor can achieve dramatically better performance
than v8 (explained later), which does not have similar type
inference.

7.3 Hit ratio of inline caching
In order to understand the object dynamism, we collect the
cache hit ratio of the inline caching optimizations in TypeCastor,
i.e., how accurate the object property lookups can be predicted.
The scalar benchmarks that do not have lots of object property
accesses are excluded since they are not representative for the
evaluation.

Figure 7 shows the hit ratio data for all the property lookup
instances. We find that position inline caching achieves
excellent hit ratio (95.2%) in average. Naturally it contributes
most in speeding up the property accesses.

Together with prototype inline caching, close to 100% cache hit
ratio (99.9%) is achieved in average excluding benchmark
access-binary-trees.js. The reason for the relatively low hit ratio
(63%) in access-binary-trees.js is that, many of its property
accesses are write operations that produce new properties. These
operations cannot hit in cache because the properties are not
existent yet at the writing time. It worth noting that the behavior
of inline caching in TypeCastor is quite similar to that of cache
hierarchy in microprocessor architecture: Most of the accesses
hit in first level cache, and almost all the accesses can be
satisfied by the two-level cache. Hardware acceleration for
JavaScript property access might be able to learn from the
traditional cache design.

7.4 Overall performance results
Although we develop the TypeCastor techniques to demystify
the dynamic typing behavior, it is still interesting to look at its
pure performance with the benchmark. The data are not
supposed to be interpreted as a quality judgment of the
JavaScript engines. We only want to show how further we can
go with the techniques in controlling the dynamism.

We run the benchmark with three engines: TypeCastor,
TraceMonkey and Chrome V8. Figure 8 shows the
improvements achieved by TypeCastor against TraceMonkey
and V8. We can find that TypeCastor performs slightly better

Figure 7. Hit ratios of inline caching

0.00%

25.00%

50.00%

75.00%

100.00%

125.00%

ac
es

s-
b

in
ar

y-
t r

e e
s .

js

a c
c e

s s
- n

b
o

d y
.j s

co
n

tr
o l

fl
ow

-r
ec

u
rs

iv
e.

j s

c r
y p

to
-s

h
a 1

. js

m
at

h-
c o

r d
i c

.j s

m
at

h -
p a

r t
ia

l-
s u

m
s .

js

m
a t

h -
s p

e c
tr

al
-n

o
rm

.j s

3d
-r

ay
tr

a c
e .

js

3 d
-c

u
be

.js

3 d
-m

o
rp

h
.j s

H
it

ra
tio

Position caching Prototype caching

Figure 8. Comparison to V8 and TraceMonkey

-100.0%

-50.0%

0.0%

50.0%

100.0%

150.0%

200.0%

ac
ce

ss
-b

in
ar

y -
t r

ee
s.

js
a c

c e
s s

- f
a n

n
ku

ch
.js

a c
c e

s s
- n

b
o

d y
. js

a c
c e

s s
-n

si
ev

e.
js

b
ito

ps
-3

b
it -

b
it

s -
in

-b
yt

e.
j s

b
it o

p s
- b

i t
s-

in
- b

y t
e .

js
b

it o
p s

- b
it w

i s
e -

a n
d

.js
b

ito
p s

-n
s i

ev
e-

bi
t s

. js
c o

n
tr

ol
f l

o
w

- r
e c

u
rs

i v
e .

js
cr

yp
to

-s
h a

1 .
j s

cr
y p

t o
- m

d5
.js

m
a t

h -
co

rd
ic

.js
m

a t
h -

pa
rt

ia
l -

s u
m

s.
js

m
a t

h -
sp

ec
tr

al
- n

o
rm

.j s
3d

-r
ay

tr
a c

e .
js

3d
-c

ub
e.

j s
3 d

- m
o

r p
h

.js
A

V
E

R
A

G
E

Im
p

ro
ve

m
en

t

vs.TraceMonkey vs.V8

416.2%

Figure 6. Coverage of type analysis

than V8 and TraceMonkey, with 5.6% and 12.7% average
speedups respectively. TypeCastor has best performance for four
of the 16 benchmarks.

It is interesting that V8 obviously does not perform well with
bitops-bitwise-and application compared to TypeCastor and
TraceMonkey. If without this application, V8 should have much
better average performance than TypeCastor. As we have
already described, TypeCastor can infer all the types of bitops-
bitwise-and. We guess TraceMonkey can identify all the types
as well by type tracing, while V8 cannot due to the lack of
similar type analysis or type tracing.

8. Discussion and future work
This paper describes the techniques we develop in TypeCastor
to demystify the dynamism of JavaScript language. Since our
focus is not the ultimate performance, we do not fine tune the
optimizations, and we do not develop more optimizations.

In our evaluation, we find that most of the type access instances
can be statically analyzed in the compilation time. We
demonstrate that type analysis can play a critical role for
JavaScript performance improvement. For object property
access, we propose new inline caching mechanisms that are
more capable than the traditional ones. When the position and
prototype inline caching mechanisms work together, most of the
object property lookups can be satisfied by the cache. As a side
effect, when we apply the techniques to TypeCastor, it achieves
best performance among the known engines when evaluated
with SunSpider benchmark.

Although the results look promising, there are limitations in our
work.

Firstly it is not a complete JavaScript engine. For example,
TypeCastor does not support DOM, hence cannot work with a
real browser. It is unknown how our analysis techniques perform
when applied to real web workloads.

Secondly we do not know if the well-recognized SunSpider
benchmark is really representative for JavaScript’s dynamic
typing behavior. For example, we find the inline caching
techniques we develop already satisfy most of the property
lookups, which means the object type analysis is not critical for
SunSpider’s performance. But it does not necessarily mean that
the object type analysis is not important for other web
workloads.

Finally, we do not know if our techniques can be easily
integrated to other known JavaScript engines such as V8 or
TraceMonkey. This is one of the major areas we are looking at
recently.

For next step, we plan to do following things. We will evaluate
our techniques with more workloads. At the same time, we plan
to introduce more traditional complier analysis and
optimizations into the engine, assuming the dynamism is
reduced largely by our techniques. The other area to look at is
how to apply our technique into existing engines. It is also
interesting is to see the tradeoffs between the static compilation
and the runtime engine execution.

9. References

[1] Peter Thiemann. Towards a type system for analyzing
javascript programs. In ESOP, pages 408–422, 2005.

[2] Christopher Anderson, et al. Towards type inference for
JavaScript. In Proc. 19th European Conference on Object-
Oriented Programming, ECOOP ’05, volume 3586 of
LNCS. Springer-Verlag, July 2005.

[3] Simon Holm Jensen, et al. Type Analysis for JavaScript.
SAS, volume 5673 of Lecture Notes in Computer Science,
page 238-255. Springer, 2009

[4] Mozilla Rhino. JavaScript for Java. http://
www.mozilla.org/rhino/

[5] Mads Sig Ager. V8 Internals. Google IO 2009,
http://dl.google.com/io/2009/pres/W_1230_V8
BuildingaHighPerformanceJavaScriptEngine.pdf

[6] Andreas Gal, et al. Trace-based Just-in-Time Type
Specialization for Dynamic Languages. In Proceedings of
the ACM SIGPLAN 2009 Conference on Programming
Language Design and Implementation, Dublin, Ireland,
2009.

[7] Phillip Heidegger and Peter Thiemann. Recency types for
dynamically-typed object-based languages. In Proc.
International Workshops on Foundations of Object-
Oriented Languages, FOOL ’09, January 2009

[8] Gogul Balakrishnan and Thomas W. Reps. Recency-
abstraction for heap-allocated storage. In Kwangkeun Yi,
editor, SAS, number 4134, pages 221–239. Springer,
2006.

[9] Dongseok Jang and Kwang-Moo Choe. Points-to analysis
for JavaScript. In Proc.24th Annual ACM Symposium on
Applied Computing, SAC ’09, Programming Language
Track, March 2009

[10] Surfin’ Safari. Announcing SquirrelFish Extreme.
http://webkit.org/blog/214/ introducing-squirrelfish-
extreme/

[11] M. Berndl, et al. Context Threading: a Flexible and
Efficient Dispatch Technique for Virtual Machine
Interpreters. In 2005 International Symposium on Code
Generation and Optimization, p. 15–26, March 2005.

[12] Mozilla.org. SpiderMonkey (JavaScript-C) Engine.
http://www.mozilla.org/js /spidermonkey/

[13] Manuel Fähndrich, Alexander Aiken. Program Analysis
Using Mixed Term and Set Constraints. Proceedings of
the 4th International Symposium on Static Analysis,
p.114-126, September 08-10, 1997

[14] Ecma International Organization. Standard ECMA-262
ECMAScript: A general purpose, cross-platform
programming language.
http://www.ecmainternational.org/publications/standards/
Ecma-262.htm

[15] WebKit Organization. SunSpider JavaScript Benchmark.
http://www2.webkit. org/perf/ sunspider-
0.9/sunspider.html

[16] M. Bugliesi and S. M. Pericas-Geertsen. Type inference
for variant object types. Information and Computation,
v.177 n.1, p.2-27, 25 August 2002

[17] M. Chang, et al. Efficient Just-In-Time execution of
dynamically typed languages via code specialization using
precise runtime type inference. Technical Report ICS-TR-
07-10, Donald Bren School of Information and Computer
Science, University of California, Irvine, 2007.

[18] The Apache Software Foundation. Apache Harmony.
http://harmony.apache.org.

[19] Mozilla Corporation. SpiderMonkey Internals.
https://developer.mozilla.org/En/Spider
Monkey/Internals/Property_cache

[20] Chambers, Ungar, Lee .An Efficient Implementation of
Self, a Dynamically-Typed Object-Oriented Language
Based on Prototypes. Lisp and Symbolic Computation, 4,
3, 1991

Appendix
Table 3. Expression based set constraints for JavaScript.

The first column “Expression” has the operation definitions. The second column “Result typing rule” gives the constraints for result
operand, and the third column (with two sub-columns) “Operand typing rule” gives the constraints for source operand(s).
Notations:

1. e,e1,e2,… : expressions.
2. p,p1,p2,…: property names.
3. a1,a2,…: formal argument names.
4. v: variable names.
5. T(e): the type set of the expression.
6. U: Set of all possible types.
7. JSObject: JavaScript object.

Expression Result typing rule Operand typing rule
c (constant) T(c) c U
v (variable) T(v) v U

e {JSObject}
new e(e1,e2,…) {JSObject}

e1,e2,… U
this {JSObject}

{p1:e1,p2:e2,pn:en} {JSObject} e1, e2… U
function (a1,a2,…){s} {JSObject}

e.p U e {JSObject}
e {JSObject}

e[e1] U
e1 {Number}
e {JSObject}

e(e1,e2,…) U
e1,e2,… U

v++/v--/++v/--v {Number} T(v)={Number} v {Number}
+e/-e/~e/ e++/e--/++e/--e {Number} e {Number}

!e {Boolean} e {Boolean}
delete e.p {Boolean} e {JSObject}

e {JSObject}
delete e[e1] {Boolean}

e1 {Number}
e1 {Number} {e1 op e2 | op∈{-, *, /, %,

<<, >>, >>>, |, &, ^}}
{Number}

e2 {Number}

e1 {String} if T(e2) = {String}
{Number} otherwise {e1 op e2 | op∈{<, <=, >,

>= }}
{Boolean}

e2 {String} if T(e1) = {String}
{Number} otherwise

e1 T(e2) if T(e2)!= U
{Number} otherwise {e1 op e2 op∈{==, ===,

!==, != }}
{Boolean}

e2 T(e1) if T(e1)!= U
{Number} otherwise

e1 {String}
e1 in e2 {Boolean}

e2 {JSObject}
e1 {JSObject}

e1 instanceof e2 {Boolean}
e2 {JSObject}

e1 {String} if T(e2)= {String}
{Number} otherwise

e1 + e2

{String} if T(e1) = {String} or
 T(e2) = {String}

{Number} if {String} ⊄ (T(e1)� T(e2))
 and

 {JSObject} ⊄ (T(e1)� T(e2))
{Number, String} otherwise

e2 {String} if T(e1) = {String}
{Number} otherwise

e1 {Boolean}
e1 && e2 (T(e1) – {JSObject})� T(e2)

e2 {Boolean}
e1 {Boolean}

e1 || e2 (T(e1) – {Null, Undefined})� T(e2)
e2 {Boolean}
e1 {Boolean}
e2 {Number} e1 ?e2 : e3

T(e2) if T(e1)={JSObject}

T(e3) if T(e1) ⊆ {Undefined, Null}
T(e2)� T(e3) otherwise e3 {Number}

e1 U
e1,e2 T(e2)

e2 U
v=e1 T(e1) T(v) = T(e1) e1 U

e {JSObject}
e.p=e1 T(e1)

e1 U
e {JSObject}

e1 {Number} e[e1] = e2 T(e2)
e2 U

Code A: Revised bubble sorting algorithm

1. var ELEMENT_CNT = 4000;
2. var TOTAL_LOOP_CNT = 100;
3. var list;
4. for(var i = 0;i < TOTAL_LOOP_CNT;i++){//LOOP1
5. list = new Array(ELEMENT_CNT);
6. var n = list.length;
7. for(var i = 0; i < ELEMENT_CNT; i++) {//LOOP2
8. list[i].value = Math.random();
9. if(rand_integer() % 2 == 0) {
10. list[i].is_even = true;
11. } else {
12. list[i].is_odd = true;
13. }
14. }
15. for(var i = 0;i < n;i++) {//LOOP3
16. for(var j = n - 2; j >= i;j--) {//LOOP4
17. var x = list[j];
18. var y = list[j + 1];
19. if(x.value > y.value) {
20. list[j] = y;
21. list[j + 1] = x;
22. }}}}

