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Abstract

Thread-level speculation is a technique that brings
thread-level parallelism beyond the data-flow limit by
executing a piece of code ahead of time speculatively
before all its input data are ready. This technique
appears particularly appealing for speeding up hard-
to-parallelize applications. Although various thread-
level speculation architectures and compilation
techniques have been proposed by the research
community, scalar applications remain difficult to be
parallelized. It has not yet shown how well these
applications can actually be benefited from thread-
level speculation and if the performance gain is
significant enough to justify the required hardware
support. In an attempt to understand and realize the
potential gain with thread-level speculation especially
for scalar applications, we proposed an SPT
(Speculative Parallel Threading) architecture and
developed an SPT compiler to generate optimal
speculatively parallelized code. Our evaluation showed
that with our SPT approach 10 SPECint2000
programs can achieve an average of 15.6% speedup
on a two-core SPT processor by exploiting only loop
parallelism. This paper describes the SPT architecture
and the SPT compiler which performs aggressive cost-
driven loop selection and transformation, and presents
our performance evaluation results.

1. Introduction

Thread-level speculation is an emerging technique
that can bring thread-level parallelism beyond the
program data-flow limit by speculatively executing a
piece of code before all its dependences are resolved.
The speculated execution is checked at runtime after all
its dependence are resolved to determine if there are
any dependence violations. When there is no
dependence violation, the speculation results can be
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safely committed. Otherwise, the speculation results
are invalid and need to be recovered.

With thread-level speculation, a sequential program
can be executed in multiple parallel threads but still
observing the original sequential semantics. When the
speculation is correct most of the time at runtime, the
threads exhibit substantial dynamic parallelism and can
speed up the application execution if the overhead for
the speculation support is relatively small.

Thread-level speculation appears particularly
appealing for speeding up hard-to-parallelize
applications. Figure 1 illustrates the speculative

parallelization of a sequential loop with thread-level
speculation. It shows an example loop from parser in
SPECint2000  before = and  after  speculative
parallelization. The original loop in Figure 1(a)
traverses a linked list pointed by variable ¢ and frees
the list node one by one. Traditional parallelization
cannot parallelize this loop because of the sequential
dependence of the link list chasing. However, by
speculating that the next pointer is likely not a null
pointer, it becomes possible to execute consecutive
iterations in parallel threads. Figure 1(b) shows the
corresponding code after speculative parallelization.
After determining the next node of the link list, the
main  program  thread  will execute  the

while( ¢!= NULL ){

SPT_001;
while( c!= NULL ){ ¢ = temp_c;
cl = c->next; cl = c->next;
free_Tconnector(c->c); temp_c = cl;
xfree(c, SPT_FORK(SPT_001);
sizeof(Clause)); free_Tconnector(c->c);
c=cl xfree(c, sizeof(Clause));
} c=cl;

}

(a) Original loop (b) after parallelization

Figure 1. An example loop before and after
speculative parallelization
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SPT_FORK(SPT_001) statement to fork a thread to
execute the next iteration speculatively at the label
SPT_001. After forking the speculative thread, the
main program thread and the speculative thread are
executing in parallel, one freeing the current list node
and the other freeing the next list node speculatively.
Our evaluation shows that this speculative parallel loop
can speed up the original loop by more than 40%. Only
5% of the speculatively executed instructions were
invalid and 20% of the speculative threads ran perfectly
parallel with the main program thread without
misspeculation.

Many architecture models have been proposed to
support thread-level speculation [1, 5, 8, 9, 11, 12, 13].
They differ in processor organization (such as chip
multiprocessor, multi-core processors or simultaneous
multithreaded processors), and in the thread-level
speculation support (such as thread communication and
synchronization, speculation state transition, data
dependence checking, value prediction support and
speculation commit/recovery mechanism.) Simulation
evaluation of these architecture models showed
significant  speculative  parallelism in existing
applications, especially in scientific/multimedia
applications. For large scalar applications like
SPECint2000, the reported speedups either are small or
depend on aggressive hardware assumptions.

Various compilation techniques have been proposed
to parallelize applications with thread-level speculation
[16, 14, 17]. However, scalar applications remain
difficult to be parallelized [17].

Despite the appealing concept of thread-level
speculation and sporadic evidence of speculative
parallelism, it has not yet shown how well scalar
applications can actually be benefited from thread-level
speculation and if the performance gain is significant
enough to justify the required hardware support.

1.1 Speculative Parallel Threading

In order to understand and realize the potential gain
with thread-level speculation especially for scalar
applications, we proposed an SPT (Speculative Parallel
Threading) architecture and developed an SPT
compiler to generate optimal speculatively parallelized
code.

With the knowledge of limited parallelism in scalar
applications, we primarily focus ourselves on small-
scale but tightly coupled multiprocessors.  The
proposed SPT architecture consists of two tightly-
coupled in-order pipeline cores. The two pipeline cores
share the same instruction and data caches, and are
functionally asymmetric, i.e., one runs the main or the

architectural thread while the other runs speculative
threads. One key feature of the SPT architecture is its
selective re-execution recovery mechanism. Most
other speculative multithreaded architectures trash all
speculation results and re-execute the entire speculative
thread upon misspeculation. On the contrary, upon
misspeculation the SPT architecture commits correct
speculation results and selectively re-executes only
those misspeculated instructions.

We have developed a speculative auto-
parallelization compiler to generate optimal speculative
parallelized code for the SPT architecture. This allows
us to effectively evaluate and demonstrate the actual
benefit of thread-level speculation in scalar
applications. The SPT compiler uses a comprehensive
cost-driven compilation framework which aggressively
transforms loops into optimal speculative parallel loops
and selects only those loops whose speculative parallel
execution is likely to improve program performance.
The compiler also supports and uses enabling
techniques such as loop unrolling, software value
prediction and dependence profiling to expose more
speculative parallelism.

Our evaluation shows that the SPT compilation and
architecture is effective in generating good speculative
multithreaded code and delivering good performance
with scalar applications. Ten SPECint2000 benchmarks
achieve an average 15.6% speedup on a 2-core SPT
processor.

This paper is different from the work in [4] in that,
this paper is focused on architecture instead on the
compilation techniques only and it evaluated the full
potential of the architecture instead of the benefits of
the compiler framework.

1.2 Paper Organization

The rest of the paper is organized as follows.
Section 2 discusses related work in thread-level
speculation architecture and compilation, focusing on
the performance of scalar applications. Section 3 and
Section 4 describe SPT architecture and compilation
respectively. In Section 5, we evaluate our SPT
solution. =~ We report the amount of speculative
parallelism being found and exploited in loops in
SPECint2000 benchmarks and present the overall
performance results. We conclude the paper in Section
6.

2. Related Work

The Wisconsin’s Multiscalar work [5, 15] is the first
and well-known work that studied both hardware and
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software supports in thread-level speculation. The
Multiscalar compiler applied various task size, control
flow and data flow heuristics to break a program into
fine-grained tasks [16]. Task selection in Multiscalar
processor is crucial to the delivered performance, and
the generated code for integer program contains only
10-20 instructions. Hence the performance result is
very sensitive to a particular hardware design and its
associated overhead. Recently, Park evaluated the
SPEC benchmarks on an implicitly-multithreaded
processor using the Multiscalar compiler [11]. He
showed that the SPECint2000 benchmark could
achieve 20% speedup with a fine-tuned 8-context
implicitly-multithreaded SMP processor.

Tsai et al. described how basic techniques such as
alias analysis, function inlining and data dependence
analysis could be used to partition a program into
threads which are then pipelined in the superthread
architecture [14]. For their experiments, the
benchmark programs were manually transformed at the
source level.

Garzaran et al. [6] proposed a software-only undo
log system on hardware support designed in [18],
which demonstrates the performance is only 10% less
than a full hardware implementation.

Zhai studied code scheduling and optimization
techniques to improve thread-level speculation
performance [17]. She showed that the compiler could
reduce value communication delay between the threads
significantly by forwarding scalar values to the
speculative threads and inserting synchronization.
Unfortunately, the overall average performance gain
for SPECint2000 is less than 5% on a multiprocessor
machine whose processors are 4-issue 128-entry-ROB
out-of-order superscalar processors.

Chen proposed and evaluated a Java runtime
parallelizing machine [3]. The machine is a chip
multiprocessor with thread-level speculation supports.
He showed 1.5-2.5 speedups with integer on a 4-
processor machine. While the compilation techniques
being used are generally applicable to other programs,
the benchmarks evaluated are small Java programs. It is
not clear if the performance results apply to other
speculative multithreaded architectures or to other
scalar applications.

3. SPT Architecture

A SPT architecture has been proposed to evaluate
the performance potential with thread-level speculation
in scalar applications. Here are a few major design
considerations:  First, even  with thread-level
speculation the amount of parallelism in scalar
application is expected to be limited. We focus
ourselves on small scale tightly coupled
multiprocessors in order to maintain reasonable
utilization of hardware resource and performance-cost
ratio. Second, we prefer well-established
implementation techniques and micro-architecture
structures.  Similar to superscalar processors that
executes in-order instructions out of order, the SPT
processor operates like executing in-order threads out
of order. Third, even if a speculative thread fails due
to dependence violation, those speculation results that
remain correct should be kept and reused. Recall the
example loop in Figure 1, only 20% of the speculative
threads could run perfectly parallel with the master
thread without any dependence violation. In other
words, 80% of the speculative threads failed. However,
results of 95% of the speculatively executed
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Figure 2. The SPT Architecture
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instructions were correct. Their reuse can lead to
considerable performance gain.

Figure 2 shows the proposed SPT architecture. It is
a tightly-coupled asymmetric multi-processor which
consists of two in-order pipeline cores. One processor
is the main processor which always executes the main
program thread. The other processor is the speculative
processor which executes only speculative threads.
Each processor has its own register file and program
state. They share the same memory hierarchy and
subsystem. They may have separate L1 caches, but the
caches are always coherent.

Since the speculative thread execution is speculative,
the speculative thread cannot modify the architectural
state of the program before commit. All speculative
stores by the speculative thread are stored in the
speculative store buffer. Correspondingly, all
speculative loads by the speculative thread first look up
dependent stores in the speculative store buffer and
access the shared cache/memory only when they cannot
locate their data in the speculative store buffer.

3.1 SPT Execution Model

There are two special SPT instructions, spt_fork and
spt_kill, for explicit hardware threading support. When
the main processor executes the spt_fork instruction, it
forks a speculative thread and the speculative processor
executes the speculative thread starting at the IP
address specified by the spt_fork instruction. When the
main processor executes the spt_kill instruction, any
running speculative thread on the speculative processor
is killed. The program point where the main thread
forks a speculative thread is called the fork-point. The
program point where a speculative thread starts
execution is called the start-point. Both spt_fork and
spt_kill instructions are no-ops to the speculative
processor.

When the main processor executes the spt_fork
instruction, its register context is copied to the
speculative processor before the speculative thread
starts execution.

During the parallel execution, there is no register
communication or any explicit thread synchronization
between the threads. All speculatively executed
instructions and their execution results are stored in
program order in the speculation result buffer. The
speculation result buffer is a FIFO queue similar to
ROB in out-of-order processors. When the speculation
result buffer is full, the speculative thread stalls until
there are free buffer spaces.

When the main thread eventually arrives at the start-
point of the speculative thread (assuming correct

control speculation), it checks for dependence violation.

If there is no dependence violation, the entire
speculative state of the speculative processor can be
committed at once. This includes copying the register
context of the speculative processor back to the main
processor and writing back all outstanding stores in the
speculative store buffer. We call this a fast-commit.
When there are dependence violations, the main
processor starts replaying the speculative execution
from the speculation result buffer. The speculated
instructions are examined one by one in its program
order. For those instructions that are speculatively
executed correctly, the main thread reads their
speculative results from the speculation result buffer
and commits them directly. For those instructions
whose speculative execution is incorrect, the main
thread re-executes them. If an instruction is
misspeculated and re-executed, all instructions that use
its execution result are also misspeculated and need to
be re-executed. The identification of misspeculated
instructions and their dependent instructions is
performed by the dependence checkers which are
described in the following subsection.

The main thread stops replaying the speculative
execution when either the speculation result buffer is
empty or it re-executes a branch instruction and the
next instruction does not match the one in the
speculation result buffer. The former case occurs when
the main thread catches up with the speculative thread.
The latter case occurs when the speculative thread
begins executing down a wrong path. In both case, the
speculative thread is killed and the main thread
resumes normal execution at the program point it stops
replaying.

The replay and selective re-execution recovery
mechanism allows the SPT execution to recover all
correct speculative execution results even when the
speculative thread is misspeculated.

3.2 Data Dependence Check

The SPT architecture checks both
dependences and the memory dependences.

For register dependence check, the main thread
keeps track of its register modifications since the fork-
point. All registers that has modified after the fork-
point are marked updated. When it arrives at the start-
point of the speculative thread, if any register ever read
by the speculative processor is an updated register, that
means the speculative thread has read an obsolete
register value, a dependence violation occurs. During
replay, the main processor continues to use
scoreboarding to keep track of the register

register
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modifications. Any speculated instruction that has
referenced an updated register is misspeculated and
after re-execution, its destination register is also
marked updated. A more sophisticated dependence
check is to compare the new register values at start-
point with the old register value of the register at fork-
point when the main thread arrives at the speculation
start-point. Only those registers whose values have
changed are updated registers and cause dependence
violation.

For memory dependence check, the SPT
architecture maintains a speculative load address buffer
in addition to the speculative store buffer. A
speculative load accesses the cache/memory only when
there is no matched data in the speculative store buffer.
The memory dependence checker records all such
cache/memory loads in the load address buffer.
Whenever the main thread stores to the cache/memory
before it arrives at the start-point, the store address is
checked against all load addresses in the speculative
load address buffer. Any match indicates a memory
dependence violation. The misspeculated load is
marked and will be re-executed during replay.

4. SPT Compilation

We have developed an SPT compiler based on
Open Research Compiler (ORC [10]) for loop-level
parallelism by executing successive loop iterations
speculatively in parallel threads. For SPECint2000
benchmarks, the performance of ORC 2.1 is on par
with the Intel IPF product compiler (ecc 7.0) and 30%
ahead of gcc 3.1 on an Itanium system.

We implemented our speculative parallelization
framework primarily in the machine-independent scalar
global optimization (WOPT) phase of ORC, right after
its loop-nested optimization (LNO). Most analyses and
transformations were done in ORC’s SSA form [2]. For
readers who are interested in the details of our compiler
framework, please refer to paper [4]

SPT compiler has a comprehensive cost-driven
compilation framework that selects only the loops that
are likely to improve delivered performance, and
transforms them into speculative parallel loops, called
SPT loops. An SPT loop execution scenario is
illustrated in Figure 3.

In Figure 3, the main thread executing iteration i
forks the speculative thread for iteration i+1. The
insertion of instruction spt_fork effectively partitions
the loop body into pre-fork and post-fork regions. The
source of any cross-iteration dependence is called
violation candidate. Since the speculative thread starts
after the pre-fork region of the main thread is finished,
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Figure 3. SPT loop execution scenario.

(The loop body is shown as square and the true
dependences are shown as arrows. The cross-line in the
loop body refers to the fork-point., and the start-point is
always at the loop body start.)

iteration i

pre-fork region ——

post-fork region
_

\\

all the dependences originated from the main thread’s
pre-fork region are guaranteed to be satisfied; so we
care only those dependences from post-fork region. On
the other hand, we can not put all violation candidates
into pre-fork region, because the code in pre-fork
region is sequentially executed by the threads.
Amdahl’s law requires the pre-fork region size small
enough compared to the post-fork region in order to
bring any parallelism benefits, especially when the
threading overhead is considered.

The misspeculation penalty caused by a dependence
is determined by the probability of the dependence
really happening at runtime, and the misspeculation
computation amount caused by this dependence that
needs to be re-executed. The overall effects of all the
dependences in a loop is computed as misspeculation
cost, which is the expected misspeculated computation
amount within a speculative executed loop iteration
that needs to be re-executed if the loop is transformed
with SPT compilation and run on SPT architecture.

The goal of SPT compiler is to find out an optimal
loop partition for each loop candidate that has minimal
misspeculation cost. SPT compiler accomplishes the
goal with its cost-driven compilation framework in a
two-pass compilation process, as we describe in
following sections.

4.1 Cost-driven Compilation

The key element in SPT compiler is its cost-driven
compilation. The misspeculation cost computation is
the central component of the framework, which is
based on a misspeculation cost model built with
annotated control-flow graphs and data-dependence
graphs (DD graph) as shown in Figure 4. The control-
flow graph is annotated with reach probability and the
data-dependence graph with dependence probability.
By querying the cost computation core, SPT compiler
searches optimal loop partition for each loop and
applies SPT loop transformation upon selected loops.
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Misspeculation cost is actually computed with cost
graph, which is built based on the control-flow graph
and the data-dependence graph. Basically, the inner
nodes of the cost-graph represent operations of the
speculative thread annotated with the operation’s
computation amount, and each edge X—Y in the cost-
graph is annotated with a probability p, which is the
conditional probability that a re-execution at X causes
Y to be misspeculated and re-executed, given that X is
misspeculated.

Annotated CFG Annotated DD-graph
— L
Misspeculation
cost computation Cost graph
— T—
Optimal loop SPT loop
partition transformation

Figure 4. SPT compilation framework

For a given loop partition, we need first estimate of
the re-execution probability of each operation in the
speculative thread by walking through the cost graph in
topological order. Then the misspeculation cost of the
given partition is computed as:

2 P(c) * Cost(c)

¢ 1)

The summation is for all nodes c in the cost graph,
P(c) is the re-execution probability of node ¢ and
Cost(c) is the amount of computation in node c.

In order to select and transform only good SPT
loops without missing any good ones, SPT compiler
goes through two compilation passes. The first pass
selects loop candidates according to simple selection
criteria like loop body size and trip count, and apply
loop preprocessing such as loop unrolling and
privatization for more opportunities of thread-level
parallelism. Then, the SPT compiler finds out the
optimal loop partition for each loop candidate, and
determines its speculative parallelism amount. The
results of all loop candidates’ optimal partitions are
output and the first pass finishes without any real
permanent transformation. Next, the second pass reads
back the partition results and evaluates all loops

together, then selects all good and only good SPT loops.

These loops are again preprocessed, partitioned, and
transformed so as to generate final SPT code.

4.2 Optimal Loop Partition Searching
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With the misspeculation cost of a given partition,
searching for the optimal loop partition of a loop is not
a trivial work. A direct algorithm might exhaustively
enumerate all the combinations of the loop body
statements but our experiments showed the direct
approach is not valid because of both correctness and
performance issues.

We observe that, although a partition is decided by a
set of statements in pre-fork region (or post-fork region
because they are complementary), the misspeculation
cost of a given partition is decided uniquely by the
violation candidates in the post-fork region. That
means a combination of violation candidates can
uniquely decide a loop partition. Since the number of
violation candidates of a loop is usually much smaller
than that of its statements, so we can substantially
reduce the search space by searching only partitions
that have different combinations of violation candidates
in the pre-fork region.

We use two constraint functions to reduce more the
search space and computations effectively. One is cost-
bounding function that computes the misspeculation
cost of a given partition; the other is size-bounding
function that computes the pre-fork region size of a
partition. When additional statements are moved into
the pre-fork region, the misspeculation cost will be
reduced (compared to the partition prior to the move)
and the size of the pre-fork region becomes larger. We
utilize this monotone property of the two functions to
avoid lots of redundant search and computations.

4.3 Loop Transformation

With the resulted optimal partition of a good SPT
loop candidate, SPT compiler uses code re-ordering to
transform the original loop: Assuming the SPT_FORK
statement (i.e., the partition boundary, compiled into
spt_fork instruction) is initially inserted at the loop
body start, the compiler re-orders the loop body so that
the violation candidates in the pre-fork region are all
before the SPT_FORK statement.

There are two complications in the SPT loop
transformation. One is that the life-range of different
definitions of the same symbol may be overlapped,
which is solved by introducing temporary variables to
break the live range. The other one is to deal with code
motion of partial conditional statements. When there is
a branch statement inside loop body and some code
control dependent on the branch statement is to be
moved into pre-fork region, the control dependence
relation must be maintained. We solve the problem by
copying the branch statement into pre-fork region as
well.
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4.4 Software Value Prediction

In order to achieve best transformed loop that can
deliver optimal performance with SPT architecture, we
have invented some novel techniques, which are either
essential or helpful to thread-level speculation. In this
section, we only introduce software value prediction
technique which we believe is essential for thread-level
speculation.

Not all the dependences originated from post-fork
region can be moved into pre-fork region because its
size cannot be too large. If we cannot eliminate a
critical cross-iteration dependence from post-fork
region, we can apply software value prediction [7] to
reduce its dependence probability, which reduces the
misspeculation cost as well. With software value
prediction, the compiler identifies the critical variables
that incur this kind of dependences, then instruments
the program to profile the value patterns of the
corresponding variables. If the values are found
predictable and both the corresponding value-
prediction overhead and the misprediction cost are
acceptably low, the compiler inserts the appropriate
software value prediction code to generate the
predicted values. It also generates software check and
recovery code to detect and correct potential value
misprediction. Figure 5 illustrates how a loop looks
like before and after the application of software value
prediction.

pred_x = x;
while (x) {
SPT_001:
while (x) { x = pred_x;
foo (x) ; pred_x = x+2;
x = bar (x) ; SPT_FORK (SPT_001) ;
} foo (x);
x = bar (x);
if (pred_x != x)
pred_x = Xx;

}

(a) Original loop (b) SVP-transformed loop

Figure 5. Software value prediction example

In this example, the across iteration dependence
from the definition statement x = bar(x) to the use
statement foo(x) causes high misspeculation cost. On
the other hand, the potential side effects within the
functions foo() and bar() prevents the definition
statement X = bar(x) to be moved before foo(x). The
compiler therefore profiles the value x. Assume it finds
that x is often incremented by 2 by bar(x). It then
decides to value-predict x. It implements the software
value predictor x+2 to compute the predicted value
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pred_x before the SPT_FORK statement. The
predicted value is used to set the value x in the next
iteration. If the actual value of x is different to the
predicted value, the predicted value is corrected with
the right value.

5. SPT Evaluation

We proposed the SPT architecture and developed
the SPT compiler to generate optimal speculative
parallelized code. Our purpose is to understand and
realize the performance potential with thread-level
speculation in scalar applications. We performed
simulation experiments to gather data to assess the
potential amount of speculative parallelism in scalar
applications and to determine how well our SPT
solution can realize the performance potential.

In this section, we first describe our evaluation
methodology. Then we report the loop characteristics
of the benchmarks, the amount of speculative
parallelism in loops in the benchmark and the SPT
performance results.

5.1 Evaluation Methodology

The SPECint2000 benchmarks were evaluated in
our experiments as representative scalar applications.
We compiled SPECint2000 benchmarks with our SPT
compiler and run the executables on an SPT simulator.

The SPECint2000 benchmarks were compiled to
generate two different versions of executable code.
Both versions are generated using ORC -0O3
optimization level with profile-guided optimizations.
One version is the ordinary optimized Itanium code and
serves as our baseline reference; the other version of
executable code is our optimal speculatively
parallelized code.  All SPECint2000 benchmarks
except eon and perlbmk were evaluated in this study.
Eon and perlbmk failed to run on our simulator because
eon requires C++ library supports and perlbmk requires
an additional system call support.

The generated code was simulated using an in-house
trimmed down input set that is derived from the SPEC
reference input set. All simulation runs ran to program
completion. The derived input sets were created to
exhibit representative program behavior similar to
those generated by the reference input sets but were
substantially smaller than the reference input set to
allow realistic full program simulation. Each program
run normally executes about 20 billion instructions,
which is about 5% of that with the reference input set.
Like the reference input sets, the derived input sets
contain similar multiple runs for each benchmarks.
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Table 1. SPT simulator configuration
Processor cores 2 Itanium?2 in-order cores
Cache hierarchy L1: separate I/D cache,
16KB, 4-way, 64B-block, 1-
cycle latency

L2: 256KB, 8-way, 64B-
block, 5-cycle latency

L3: 3MB, 12-way, 128B-
block, 12-cycle latency

Memory latency 150 cycles
Normal / re-execution| 6
fetch width

Normal / re-execution| 6
issue width

Replay fetch width 12
Replay issue width 12

RF read/write ports 12

Branch predictor

GAg with 1K entries

Mispredicted branch|
penalty

5 cycles

RF copy overhead

1 cycle minimum

Fast commit overhead

5 cycles minimum

Speculation result buffer 1024 entries
size (default)
Misspeculation recovery] Selective re-execution with
mechanism (default) fast-commit (SRX+FC)
Register dependence Value-based

checking (default)

The simulator we use is a trace-driven simulator. It
reads in an execution trace of the sequential execution
of the program, and simulates the trace on two separate
pipelines. It maintains two separate cycle counters for
the main pipeline and the speculative pipeline to keep
track the speculative parallel execution. The cache
system is also simulated. Each cache and memory
access is tagged with the corresponding time stamp to
maintain the proper temporal ordering. Table 1
describes the default machine configuration. The
processor core and memory subsystem has the same
configuration as an Intel’s Itanium2 machine.

5.2 Benchmark Characteristics

In order to understand the capability of our SPT
solution, we have to know the potential and
characteristics of SPECint2000 benchmarks.

Figure 6 shows the loop coverage of the
applications.  The curves show the accumulative
coverage in term of dynamic execution cycles of all
loops whose body size (in term of number of
instruction) is within certain limit.

As shown in the figure, the accumulative coverage
of loops whose average body size is less than a few
hundred instructions is considerable high even though
the applications are traditionally considered to be not
loop-intensive. Besides gap and vortex, the total loop

coverage is more than 60%. For gap, the total
coverage increases sharply from 35% to 95% once
loops with average loop body size of 2500 instructions
are included. This is contributed by one highly skewed
but very hot loop whose loop body size is usually not
large but can occasionally becomes huge when certain
function calls are made in the loop body. Vortex has
very little loop coverage even with loops whose body
size has a few tens of thousand of instructions. This
implies that the performance opportunity of speculative
parallel loops in vortex is insignificantly small. We do
not expect any speedup for vortex. The figure indicates
that most of the applications execution time is
dominated by loops whose loop body size are less than
10K instructions.

Loop coverage
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Figure 6. Loop coverage of SPECInt2000

5.3 SPT loops coverage

With the loop coverage shown in Figure 6, we
collect data on how many speculative parallel loops are
generated by SPT compiler for each benchmark. Figure
7 shows the SPT loops number and their total coverage
as compared with the corresponding maximum loop
coverage for all loops with same size limit.

Except the special case in gap, we only considered
loops whose estimated loop body size is less than 1000
instructions in this data because of practical
architecture considerations. For gap, because of one
hot loop mentioned above, we considered loops with
average loop body size less than 2500 instructions. The
figure shows SPT compiler does a pretty good job in
parallelizing interesting loops. At the same time, the
data suggests the SPT loop parallelization is also
effective to derive thread-level parallelisms from scalar
applications: On the average, only 32 SPT loops are
generated but they cover as high as 53% of the total
execution cycles of the program.
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SPT loop number and coverage
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Figure 7. Number and coverage of SPT loops
5.4 SPT Loops Performance

Now we understand the SPT loops coverage is
really encouraging, we also want to know the
performance achieved at loop-level with our SPT
solution. Figure 8 shows the loop-level performance of
the SPT loops. On the average, an SPT loop that we
generated is able to speed up by 35%. The success
ratio of speculative parallelization is pretty high. Out
of all speculative threads being spawned during run-
time, 64% of them could be fast-committed
successfully (i.e., without any dependence violation,
shown as the bars of Fast commit ratio). Only 1.2% of
all  speculatively  executed instructions  was
misspeculated and required re-execution (see the
curves for misspeculation ratio).

SPT loop performance
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Figure 8. SPT loop performance

This data essentially exhibits the degree of inter-
iteration true dependences of scalar application loops.
The high fast-commit ratio means good iteration-level
parallelism. Interesting enough is that, although the
fast-commit ratio is high, there is still misspeculation
existing. This observation verifies that the substantial

thread-level parallelisms of the loops can only be
extracted dynamically at runtime.

5.5 SPT Overall Performance

Finally, Figure 9 shows the overall program
performance of speculative parallel loops in
Spec2000Int benchmarks when running on the default
machine configuration (that is, with selective replay
and fast commit and 1024-entry speculation result
buffer). It shows that the speculative parallel loops are
able to achieve an average of 15.6% program speedup
on the two-core SPT architecture as against the
optimized non-SPT code running on one core. Notably,
the known hard-to-parallelized gcc is able to achieve
14.3% speedup. The gain in bzip2 is hurt by indirect
global memory updates via function calls. Crafty has
many loops of short iteration counts that is inefficient
to parallelize at iteration level. Vortex does not show
any performance gain as expected.

The figure also shows the breakdown of the source
of program speedup. On the average, out of the 15.6%
program speedup, 8.4% comes from reduction in
pipeline execution cycles, 1.7% comes from reduction
in pipeline stall cycles and 5.5% comes from reduction
of D-cache stall cycles. This indicates that speculative
parallelization is effective in exploiting both
computation parallelism and memory parallelism.

6. Conclusion

Speculative multithreaded computation is an
emerging technique that can parallel sequential
programs by speculatively breaking the data
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Figure 9. SPT performance with SPECint2000

dependences. Although the idea behind the technique is
appealing, the practical solution and actual benefits of
the thread-level speculation for scalar applications are
not fully understood. In this paper, we describe our
SPT (Speculative Parallel Threading) solution,
including SPT architecture proposal and a cost-driven
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compiler. Data shows SPECint2000 benchmarks have
considerably high loop coverage and the SPT solution
can extract substantial loop parallelism from the
applications. Up to an average of 15.6% speedup on a
two-core SPT architecture is achieved in our work.

While the demonstrated performance is encouraging,
we note that there are still loops that are not
speculatively parallelized because of too big or small
loop body size, too many violation candidates, too
large misspeculation cost or too small iteration count.
Except the case of too large misspeculation cost, which
means intensive dependences between consecutive
iterations hence little inherent parallelism, all of the
rest cases can be improved in further studies. Region-
based speculation is believed to be a potential approach,
which tries to parallelize a sequential piece of code by
executing its first half and second half in parallel. The
other important future work is to fully understand the
implications of various architectural parameters upon
the delivered performance.
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