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Packer: Parallel Garbage Collection Based 
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Abstract—the fundamental challenge of garbage collector (GC) design is to maximize the recycled space with minimal time 
overhead.  For efficient memory management, in many GC designs the heap is divided into large object space (LOS) and 
normal object space (non-LOS). When either space is full, garbage collection is triggered even though the other space may still 
have plenty of room, thus leading to inefficient space utilization. Also, space partitioning in existing GC designs implies different 
GC algorithms for different spaces. This not only prolongs the pause time of garbage collection, but also makes collection 
inefficient on multiple spaces. To address these problems, we propose Packer, a parallel garbage collection algorithm based on 
the novel concept of virtual spaces. Instead of physically dividing the heap into multiple spaces, Packer manages multiple virtual
spaces in one physical space.  With multiple virtual spaces, Packer offers efficient memory management. With one physical 
space, Packer avoids the problem of inefficient space utilization.  To reduce the garbage collection pause time, we also propose 
a novel parallelization method that is applicable to multiple virtual spaces. Specifically, we reduce the compacting GC 
parallelization problem into a DAG (discreted acyclic graph) traversal parallelization problem, and apply it to both normal and 
large object compaction. 

Index Terms—garbage collection, Java Virtual Machine, memory management, parallel systems  

—————————— ——————————

1 INTRODUCTION
arbage collection technology has been widely used  
in managed runtime systems, such as Java virtual 
machine (JVM) and Common Language Runtime 

(CLR) systems.  For efficient memory management, a 
modern high performance garbage collector (GC) usually 
manages large and normal objects separately such that 
the heap is d ivided into large object space (LOS) and non-
large object space (non-LOS).  However, the object size 
d istribution varies from one application to another and 
from one execution phase to the next even in one applica-
tion, thus it is impossible to predefine a proper heap pa r-
titioning for LOS and non-LOS.  Existing GCs with sepa-
rate allocation spaces mostly suffer from the problem that 
they do not fit well with the run-time variation of the ob-
ject size d istribution at runtime. This problem leads to 
imbalanced space u tilization and thus negatively impacts 
the overall GC performance.  For garbage collection algo-
rithms, conventional mark-sweep and  reference counting 
collectors are susceptible to fragmentation.  To address 
this problem, copying or compacting GCs are introduced.  
Compaction eliminates fragmentation in place by grou p-
ing live objects together in the heap and freeing up large 
contiguous spaces for fu ture allocation.  As multi-core 

architectures prevail, parallel compaction algorithms have 
been designed to achieve better time efficiency.  However, 
large object compaction is hard  to parallelize due to 
strong data dependencies such that the source object can 
not be moved to its target location until the object orig i-
nally in the target location has been moved out. The par-
allelism seems inadequate when there are few large ob-
jects.   

In this paper, we propose Packer, a parallel garbage 
collection algorithm based on the novel concept of virtual 
spaces.  Unlike some conventional garbage collectors [2] 
which physically d ivide the heap into multiple spaces, 
Packer manages multiple virtual spaces in one physical 
space.  With multiple virtual spaces, Packer offers the ad -
vantage of efficient memory management, so that d iffer-
ent virtual spaces can employ best su itable collection a l-
gorithms. With one physical space, Packer avoids the 
problem of inefficient space u tilization, since there is no 
space partitioning problem any more.   

Object allocation is highly efficient in Packer. The free 
space in the physical heap is centrally controlled  by a 
DAG structure.  When one of the virtual spaces needs 
more space, then it searches the DAG to fetch a su itable 
free region. In particular, normal object allocation is done 
in thread  local blocks with bump -pointers, requiring no 
synchronization.  Garbage collection is triggered  only 
when the heap contains no free region, thus guaranteeing 
that the heap is fu lly u tilized . Packer supports both com-
paction and mark-sweep for large objects.  Hence, it in-
corporates the advantages of both the Mark-Sweep and  
Compaction algorithms, and  is able to achieve high per-
formance when either algorithm is su itable.  To further 
reduce the garbage collection pause time of Packer, we 
reduce the compacting GC parallelization problem into a 
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DAG (discrete acyclic graph) traversal parallelization 
problem, and apply it to both normal and large object 
compaction.   

In this paper we present the design details of the pro-
posed algorithms and evaluate their efficiencies.  These 
algorithms are implemented  in Apache Harmony [10], a 
product-quality open source JAVA SE implementation.  
The rest of the paper is organized  as follows. Section 2 
d iscusses the related  work. Section 3 introduces the basic 
algorithm designs of Packer. Section 4 presents the para l-
lelization of normal and large object compaction.  Section 
5 presents the evaluation results with SPECjbb2005 and 
Dacapo benchmark suites. Finally, section 6 summarizes
the project and d iscusses fu ture work. 

2 RELATED WORK
As exemplified  by the LISP2 algorithm [5], compaction 
algorithms are u tilized  in GC designs to address the d is-
advantages of mark-sweep algorithms.  However, com-
paction usually imposes lengthy pause time.  To reduce 
pause time, several parallel compaction algorithms have 
been proposed.  Flood et al. [6] present a parallel compac-
tion algorithm that runs three passes over the heap. First, 
it determines a new location for each object and installs a 
forwarding pointer, second  it fixes all pointers in the heap 
to point to the new locations, and finally, it moves all ob-
jects.  To make this algorithm run in parallel, the heap is 
split into N areas such that N threads are used  to compact 
the heap into N/ 2 chunks of live objects.  The main d is-
advantage of this design is that the resulted  free space is 
noncontiguous.   Abuaiadh et al. [7] propose a three-
phase parallel compactor that uses a block-offset array 
and mark-bit table to record the live objects moving d is-
tance in blocks.  Kermany and Petrank [8] propose the 
Compressor that requires two phases to compact the 
heap; also Wegiel and Krintz [9] design the Mapping Col-
lector with nearly one phase.  Both approaches depend on 
the virtual memory support from the underlying operat-
ing system.   

It has been empirically observed that in many pro-
grams, the most recently created  objects are also those 
most likely to become unreachable quickly. Generational 
GCs leverage this property and d iv ides objects into gen-
erations [18]. In this case, separate memory regions are 
used  for objects of d ifferent generations. For example, the 
heap can be d ivided into a nursery object space (NOS) to 
store newly created  objects and a mature object space 
(MOS) to store mature objects, i.e. the objects that survive 
one or more collections. When NOS becomes fu ll, GC 
happens in NOS and moves those few live objects to 
MOS, and the entire NOS region can then be overwritten 
with fresh objects; and we call this a minor collection. 
Semi-Space GC is another technique that exploits the 
temporal localities of objects [29]. In Semi-Space GC de-
signs, the heap memory is d ivided into two equally-sized  
regions: the from -space and  the to-space. During normal 
execution, the mutator allocates new objects from from-
space. Eventually, continued allocation exhausts from -
space causing the program to be suspended while the 

collector reclaims memory. Using the Semi-Space concept, 
Fenichel and Yochelson designed a Lisp Garbage Collec-
tor [19], in which the heap is d ivided into two regions. 
Only one of the two regions is used  at any time. Objects 
are allocated  in one region until the space has been ex-
hausted . Then all objects are moved to the other region, 
being placed side by side, so that there is no memory 
fragmentation in the newly copied  region. Although this 
scheme is better in pause time, it is worse in space cost 
than other algorithms. Other well-known GC designs that 
use this concept include Baker ’s collector [20], Brooks’s 
collector [21], and the Train  collector [22].  Specifically, 
Baker ’s and Brooks’s techniques use a read  barrier, which 
is not very efficient. The Train collector can run with very 
low space overheads. It can suffer from large remembered 
sets, though there are proposals on limiting that space 
overhead. 

Early efforts on designing parallel collectors include 
Halstead’s collector for Multilisp  [16]. The Multilisp col-
lector, however, has problem scaling because it does not 
load -balance the collection work.  Cheng and Blelloch [15]
introduced a parallel, real-time garbage collector which is 
designed for shared -memory multiprocessors. It can re-
duce excessive interleaving, hand ling stacks and global 
variables, reduce double allocation and special treatment 
for large and small objects. By making all aspects of the 
collector incremental and allowing an arbitrary number of 
application and collector threads to run in parallel, they 
were able to achieve tight theoretical bounds on the pause 
time for any application threads as well as bound the total 
memory usage. Appel et al. presented  a parallel copying 
collector intended to run on conventional machines [24].
Their scheme takes advantage of virtual memory hard -
ware. They require intervention when the page on which 
an object resides is first accessed (either written or read), 
whereas our scheme requires intervention only when the 
page is first written, and then only if the operating system 
does not allow  use of hardware d irty bits. Since their a l-
gorithm also copies list structures breadth -first, and thus 
does not preserve locality in list structures, this may result 
in a flurry of such intervention at the beginning of a col-
lection. Similarly, Demers et al. introduced  a parallel col-
lection algorithm based on virtual checkpoints imple-
mented  with a copy-on-write strategy [25]. The algorithm 
does not incur the copying overhead, is typically easier to 
implement, and requires no additional memory. Also, 
DeTreville introduced a parallel trace-and -sweep collector 
which uses virtual memory hardware instead  of exp licit 
mutator cooperation [26]. His collector requires that 
slightly less work be performed while the mutator is 
stopped but, it requires that the collector be notified  on 
initial read  accesses by the mutator. In [23], Boehm et al.
rely on virtual memory hardware to provide information 
about pages that have been updated  or ‘‘d irtied’’ during a 
given period  of time. This method has been used  to con-
struct a mostly parallel trace-and-sweep collector that 
exhibits very short pause times.  

Moreover, Endo et al. [14] introduced  a parallel stop-
the-world  GC algorithm using work stealing. Their algo-
rithm depends on threads w ith work copying some work 
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to auxiliary queues, where the work is available for stea l-
ing. Threads without work look for an auxiliary queue 
with work, lock the queue, and steal half of the queue's 
elements. Halstead  describes a multiprocessor GC for 
Multi-Lisp [27]. Each processor has its own local heap, 
and they use lock bits for moving and  updating forward -
ing pointers. Load balancing is done stat ically rather than 
dynamically. Steensgaard  explored  a clever method for 
partially parallelizing collection [28]: Compile-time analy-
sis identifies allocation sites that allocate objects that nev-
er escape the allocating thread  (are never accessible to oth-
er threads.) Such objects are allocated  in a thread-local heap, 
which can be collected  independently of other threads. 
This technique avoids the synchronization issues that 
general parallel collection must address, but requires ex-
tensive and expensive static analysis, and only a subset of 
objects may be collected  thread -locally. Flood and Detlefs 
used  a lower-overhead work-stealing mechanism [6], and 
by addressing the harder problem of parallelizing reloca t-
ing collectors, not just a non -relocating mark-sweep algo-
rithm. They balance the work of root scanning, using stat-
ic overpartitioning, and also to balance the work of tracing 
the object graph, using a form of dynamic load  balancing 
called  work stealing. They use this infrastructure to paral-
lelize two well-known collection schemes: a two-space 
copying algorithm (semispaces) and a mark-sweep algo-
rithm with slid ing compaction (markcompact).

For efficient memory management, Caudill and Wirfs-
Brock first propose to use separate spaces to manage ob-
jects of d ifferent sizes, large object space (LOS) for large 
objects and non-large object space (non-LOS) for normal 
objects [1].  Hicks et al. have done a thorough study on 
large object spaces [2].  The results of this study indicate 
three problems for LOS designs.  First, LOS collection is 
hard  to parallelize.  Second , LOS shares the same heap 
with non-LOS, thus it is hard  to achieve fu ll u tilization of 
the heap space.  Third , LOS and non-LOS collections are 
done in d ifferent phases, which may affect the scalability 
of parallel garbage collection.  In [3], Soman et al. d iscuss 
about applying d ifferent GC algorithms in the same heap 
space, but their work does not involve dynamically ad -
justing the heap partitioning.  The study done by Barrett 
and Zorn [4] is the only known publication that studies 
space boundary ad justment, and their work aims at  meet-
ing the resource constraints such as pause time. By con-
trast, Packer does not require any boundary adjustment 
mechanism.  Instead , it manages d ifferent virtual spaces 
in the same physical space such that it avoids the problem 
of inefficient space u tilization while keeping the advan-
tage of efficient memory management.   

3 BASIC ALGORITHM DESIGNS IN PACKER
In this section, we first introduce the basic heap design of 
Packer and compare it to other heap designs. Then we 
present the data allocation scheme and garbage collection 
algorithm in Packer.   At last, we d iscuss further implica-
tions of the Packer design.    

3.1 The Basic Design of Packer 
As shown in Figure 1, with the Move-Compact algorithm 
(GC-MC), when the heap is partitioned into multiple 
spaces, for instance LOS and  non-LOS, garbage collection 
is triggered  when either space is fu ll. In times when gar-
bage collection is triggered  by one space while the other 
space is partially filled , the heap is not fu lly u tilized . This 
leads to frequent collections and  lower performance. 

LOS Non-LOS
Allocated LOS space

Allocated non-LOS space

Free space

Figure 1: compacting GC (GC-MC) with separate allocation spaces 

The key question here is why one space would  get fu ll 
before the other one does.  This is because within the 
same amount of time, a higher fraction of one space’s free 
region is allocated  than that of the other space, yet the free 
regions of d ifferent spaces can not be easily shared .  
Hence, if the free regions of the heap are centrally con-
trolled  and can be shared  by both spaces, then the prob-
lem of low space u tilization can be solved.  However, this 
is not possible when a heap is physically partitioned into 
two spaces with a boundary in between. Because it re-
quires the GC algorithm for one space virtually manage 
the regions of another space when its own space is fu ll. 
For instance, as shown in the lower part of Figure 1, if 
LOS is fu ll, we cannot allocate large objects in the free 
region of non-LOS.  Otherwise, we destroy the advantage 
brought by separate spaces, namely, efficient memory 
management.   

Allocated large objects

Allocated normal objects

Free space

Free List

Figure 2: mark-sweep GC (GC-MS) 

On the other hand, Mark-Sweep algorithm (GC-MS) 
does not d ivide the heap into separate spaces thus both 
normal and large objects share the same allocation space.  
When garbage collection is triggered , it scans the heap 
and marks all live objects.  Then it sweeps all the u n-
marked objects, leaving holes in the heap.  These holes are 
then added into a linked list for fu ture allocations.   Al-
though this algorithm is efficient and does not require 
object movement, it introduces several serious problems.  
As shown in the lower part of Figure 2, in cases when 
fragmentation is very serious, it is unable to find  a hole 
on the linked list to fit a newly allocated  object, such as 
the one at the bottom of Figure 2, even though the heap 
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has about 50% of free space.  This creates a “dead lock” 
situation, in which compaction has to be initiated  in order 
to alleviate the problem. In addition, GC-MS’s allocation 
scheme breaks the spatial locality: when it allocates sev-
eral objects that are meant to be accessed  continuously, it 
has to allocate these objects sparsely all over the heap.   
Furthermore, for the allocation of each object, it has to 
traverse the free-region linked list until it  finds a su itable 
free region.  

Virtual non-LOS

Virtual LOS

Allocated LOS space

Allocated non-LOS space

Free space

Free Area Pool

1
2
3
…. …..

>32

1 3 954 6 7 8 10 11 122

Free region list

Virtual non-LOS list

Virtual LOS list

Heap

Figure 3: the design of heap structure in Packer 

Packer is able to solve these problems by managing 
multiple virtual spaces in one physical space, such that 
these virtual spaces can share the free regions.  As shown 
in Figure 3, to coordinate data management in Packer, we 
u tilize three data structures: a virtual non -LOS list, a vir-
tual LOS list, and a Free Area Pool. The virtual non -LOS 
list points to the first normal object block in the heap, and 
this block contains a pointer that points to the next nor-
mal object block, and so on.  Hence, it is easy to find  all 
normal blocks through this virtual non -LOS list, and they 
form the virtual non-Large Object Space.  Similarly, the 
virtual LOS list points to the first large object, and this 
large object contains a pointer to the next large object, and 
so on.  The virtual LOS list and the blocks of large objects 
form the Large Object Space.   

The Free Area Pool manages all free blocks in the heap, 
and it is actually a table of linked lists indexed by the 
number of blocks. Each linked list in the Free Area Pool 
manages all free regions with a certain number of cont i-
guous blocks.  For instance, blocks 2 and 7 in Figure 3 are 
both free regions with only one block.  Hence slot 1 of the 
Free Area Pool contains a pointer to block 2, and block 2 
contains a pointer to block 7.  Also, blocks 10, 11, and 12 
form a contiguous free region, and thus slot 3 of the Free 
Area Pool contains a pointer to block 10.  For all free re-
gions that contains more than 32 free blocks, Packer org a-
nizes them in slot >32.  With this design, the virtual spac-
es can grow based on need and garbage collection only 
happens when the whole heap is fu lly u tilized .    

3.2 Object Allocation in Packer 
When multiple threads are running in an application, 
they share the heap resources thus accesses to the Free 
Area Pool for object allocation need to be synchronized .   
However, if one atomic operation is required  for each ob-
ject allocation, then the overhead would  be tremendous.  
In most applications, the majority of objects are normal 

objects which are much smaller than the block size (set to 
32 KB by default).  Thus it is essential to have an efficient 
allocation scheme for normal objects.  

The Mutator thread  is responsible for object alloca-
tion.  To reduce the synchronization overhead, each Muta-
tor fetches a thread  local block from the Free Area Pool 
through an atomic operation, and then allocates normal 
objects on this thread  local block with bump-pointer allo-
cation.  As shown in Figure 4: first, it finds out the poin-
ters to the unoccupied  region and the boundary of the 
block. Next it checks whether the block contains enough 
space to hold  the new object.  If so, it updates the free
pointer to point to the new unoccupied  region on the 
block. Otherwise, it returns NULL and  forces the mutator 
to fetch another block from the Free Area Pool.

1.  free = allocator->free;
2.  ceiling = allocator->ceiling;
3.  new_free = free + size;
4.  if (new_free <= ceiling){
5.    allocator->free= new_free;
6.    return free;
7.  }
8.  return NULL;

Figure 4: normal object allocation from the thread local block 

To guarantee fast normal object allocations, Packer 
only allocates thread  local block from slot 1 or slot >32 in 
the Free Area Pool.  It first checks if slot 1 is null, if not, it 
allocates from slot 1; otherwise it allocates from the last 
slot, slot >32.  If both slot 1 and slot >32 are null, then 
scans down the table and tries to allocate from slot 2, slot 
3, and so on. In these cases, it only requires one atomic 
operation for each thread  local block. When picking the 
thread  local block from slot 1, one atomic operation is 
enough because it never needs to put back the rest.  For 
thread  local block allocation in slot >32, instead  of remov-
ing a region, Packer simply reduces the nu mber of blocks 
of a region in the last slot. This reduction operation is 
atomic thus it guarantees thread -safe block allocation and  
only one atomic operation is needed.  On the other hand, 
to grab a region from other slots, Packer needs to pick off 
the region, allocate a block, and put back the rest into the 
corresponding slot, which requires two atomic opera-
tions.  

Different from normal objects, each large object occu-
pies one or more blocks.  Thus, the Mutators d irectly allo-
cate large objects in the Free Area Pool. As shown in Fig-
ure 5, when there is an allocation request, a Mutator first 
checks the number of blocks requested , block_count.  Then 
it searches the Free Area Pool to check whether there is 
any freed  region with block_count or more free blocks us-
ing block_count as index.  If such a free region can be 
found, the mutator updates the block status to 
BLOCK_USED, as well as updates the block header in-
formation.  Otherwise, garbage collection should  be trig-
gered . 

Figure 6 shows the search algorithm in the Free Area 
Pool: it requests one free block but slot 1 is Null.  Then it 
searches down and fetches a free region in slot 2.  This 
free region contains free blocks 1 and 2.  Packer allocates 
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block 1 and stores block 2 back into the Free Area Pool. 
With this design, Packer can achieve fast object allocation 
for both the large and normal objects. 

1.  block_count = NUM_BLOCK_FOR_SIZE(size);
2.  block= free_regions_alloc_block(block_count);
3.  if(block != NULL){
4.    block->status = BLOCK_USED;
5.    block->num_multi_block = block_count;
6.    return block->base;
7.  }
8.  return NULL;

Figure 5: large object allocation 

1
2 Null
3
…. ….
>32 Null

1

21 Null
2
3
…. ….
>32 Null

1 2
Allocated

Free Area Pool Free Area Pool

Figure 6: block allocation from the Free Area Pool 

3.3 Garbage Collection in Packer 
When the heap is fu lly occupied , garbage collection is 
triggered .  Packer u tilizes compaction algorithms, and its 

garbage collection is d ivided  into four phases.  In the first 
phase, it scans the heap and marks all live objects, then it 
builds the virtual spaces by adding all normal blocks into 
the virtual non-LOS linked list, and all large blocks into 
the virtual LOS linked list.  This phase corresponds to 
lines 1 and 2 in Figure 7.  In phase 2, normal blocks are 
compacted  towards the left of the heap and the forward -
ing tables are set in  each block.  These forwarding tables 
store the offsets between the source and target addresses 
of objects, and they are used  for the reference fixing oper-
ation in the next phase.   This phase corresponds to lines 
3, 4, and 5 in the pseudo-code.  In phase 3, Packer fixes all 
the references from both normal and large objects using 
the forwarding tables set in the previous phase.   In this 
case, if there is a reference pointing to an object that has 
already been compacted , it checks the forwarding table in 
this block to look for the address offset.  Then it subtracts 
this offset from the original address stored  in the refer-
ence to get the new address of this object.  This phase cor-
responds to line 6 of the pseudo-code.  In the last phase, 
large blocks are compacted  and the free blocks are added 
to the Free Area Pool.  This phase corresponds to line 7, 8, 
and 9 in the pseudo-code.         

Procedure Packer_Compact_Collection()

Begin

1.  parallel_mark_scan_heap();
2.  build_virtual_spaces();
3.  parallel_move_normal_objects();
4.  if(need_move_large_object)
5.    compute_large_object_target_address();
6.  parallel_fix_object_references();
7.  if(need_move_large_object)
8.    parallel_move_large_object_block();
9.  add_free_area_into_free_area_pool();
End

Large object Normal object block

(a) before GC

(b) mark live objects and build virtual spaces

(c) after GC

Figure 7: garbage collection algorithm in Packer

Packer can optionally choose not to compact large ob-
jects, such that large objects are mark-swept. With this 
support, Packer incorporates the advantages of both GC-
MS and GC-MC.  For the two extreme cases: 1) if it is 
large-object-intensive, Packer can choose to mark-sweep 
large objects, as GC-MS does, thus avoiding the object 
moving overhead; 2) if there are few large objects in the 
application, Packer behaves the same as GC-MC, thus 
creating a large contiguous free region while keeping the 
object moving overhead low.  Note that the major steps, 
marking, normal object moving, reference fixing, and 
large object moving, which correspond to steps 1, 3, 6, 
and 8 in pseudo-code, are fu lly parallelized .   

Since all the live objects are identified  during the first 
marking phase, the compaction algorithm can  pack all the 
live objects to one end of the heap without any holes u n-

filled . There is no fragmentation issue. Also note that 
Packer compacts the normal objects before the large ob-
jects: it squeezes out large contiguous free space after the 
normal object compaction and then uses the free space for 
large object compaction. 

3.4 Further Implications of Packer 
Besides the advantages in object allocation and garbage 
collection, the Packer design has three further implica-
tions: it facilitates pinned object management, the man-
agement of managed and native data in the same heap, 
and the management of d iscrete physical areas.  Pinned 
object support is required  in some ru ntime systems that 
use conservative GC.  Pinned objects are the objects that 
can not be moved or garbage collected .  One example of 
Pinned objects are the communication ports between the 
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managed and unmanaged environments.  When a gar-
bage collector scans the heap for live objects, sometimes it 
will trace to a location, the content of which (pointer or 
value) is unknown.  In this situation, conservative ga r-
bage collectors would  assume that it stores an address to 
an object.  However, the collector cannot update this ref-
erence slot because it may be storing a value instead  of an 
address.  Thus, this object is a pinned object because it 
cannot be moved. Pinned objects introduce serious prob-
lems for GC designs. Imagine that one is using a compac-
tion algorithm to move all live objects towards one end of 
the heap. After compaction is done, one assumes that th e
rest of the heap is empty and can be used  for object allo-
cation. However, since pinned objects can not be moved, 
they may reside in the free regions of the heap, and later it 
may be overwritten by the newly allocated  data.   

In conventional compacting GC designs, additional 
management techniques are u tilized  to deal with pinned 
objects in the heap.  Therefore, the algorithms have to 
sacrifice performance when there is a pinned object in the 
heap.  By introducing the concept of virtual spaces, Pack-
er is able to jump over the block containing pinned objects 
when build ing the virtual spaces without any perfor-
mance compromise.  

Pinned object is also desirable if there are lots of inte-
ractions between managed code and unmanaged code in 
the application. In most Virtual Machines, including JVM 
and CLR, the managed and unmanaged environments 
often need to communicate with each other and pass data 
around. The most common approach to deal with this 
problem is to copy data from the managed environment 
to the native environment and vice versa [17].  This is 
highly inefficient because large amount of data copying 
incurs very high time and space overheads.  Indeed, this 
problem can be solved by either temporarily d isabling 
garbage collection or pinning the data passed  across the 
boundary. With Packer ’s support of pinned object, this 
problem can be easily resolved. 

Also, in some cases, a process’s address space is seg-
mented  by the operating system. For example, the system 
may load DLLs to arbitrary address ranges, thus breaking 
the heap into multiple chunks. Packer is able to link these 
d iscrete chunks to create a virtual heap for the process, 
therefore providing an as large as possible managed heap 
to the applications, making the heap management effi-
cient. We will explore these extensions of Packer in our 
fu ture work. 

4 PARALLELIZATION OF GARBAGE COLLECTION 
In this section we first demonstrate how we reduce the 
compaction parallelization problem into a DAG traversal 
parallelization problem.  Then we present the implemen-
tation of parallel normal and large object compaction in 
Packer, as well as the load  balance mechanisms.   

4.1 Parallelization of Compacting GC 
Compacting GCs move live objects towards one end so as 
to eliminate fragmentations.  In order to increase GC effi-

ciency, parallel compaction algorithms are essential in 
modern GC designs.  The fundamental goal of a parallel 
compaction algorithm is to exploit as much parallelism as 
possible while keeping the synchronization overhead as 
low as possible.  

movement of normal objects

movement of large objects 

Figure 8: normal and large object compaction 

As shown in Figure 8, there exist many normal objects 
in virtual non-LOS, and the data dependencies between 
these normal objects are fairly low, implying a high d e-
gree of parallelism.  Note that in this context, dependence 
means location dependence, such that object B needs t be 
moved to the location where object A occupies, therefore, 
object B cannot be moved to object A’s location unless 
object A has been moved elsewhere.   In this situation, we 
say that object B has a dependence on object A.   

In order to parallelize the compaction process in a 
straightforward  manner, an atomic operation, which is 
notorious for its inefficiency, is needed for each object 
movement.  Thus the cost of parallelization  may well su r-
pass the performance gain.  On the other hand, there exist 
strong data dependencies in virtual LOS such that the 
source object can not be moved to its target location until 
the object originally in the target location h as been moved 
out. When there are only few large objects, the parallelism 
is seemingly inad equate.  

This observation indicates that we need to set a proper 
parallelization granularity to reduce the high synchroni-
zation overheads caused  by fine-grain data movement (as 
in virtual non-LOS) and the false data dependencies 
caused by coarse-grain data movement (as in virtual 
LOS).  Our design is to d ivide the heap into equal-sized  
blocks such that the parallelization granularity is a block.  
For virtual non-LOS, each block contains multiple objects. 
During collection, each thread  obtains a block and moves 
all the objects in the block.  Thus, at most one atomic op-
eration is required  for the movement of mult iple objects, 
greatly reducing the synchronization  overhead.  For vir-
tual LOS, each object contains one or more blocks.  When 
one block of a large object can not be moved due to data 
dependency, the other blocks can still be moved, thus re-
ducing the false dependency problem.  For instance, in 
Figure 9, blocks 7 and 8 belong to one object, and blocks 
11 and 12 belong to another. Originally, the blocks of one 
large object must be moved together, so blocks 7 and 8 
cannot be moved  until block 5 has been moved out.  With 
equal-sized  blocks, dependencies only exists between 
blocks 7 and 5, so the dependencies between blocks 8 and 
5 are false data dependencies. Block 8 can be moved in-
dependently of block 7.  
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Figure 9: block-based heap structure 

Further complications exist in parallelizing the com-
paction process. For virtual non-LOS, races between mul-
tiple collectors exist when they move objects from a 
source block to a target block. For instance, two collectors 
may move data from two source blocks into the same tar-
get block, or one collector may write into a target block in 
which the original objects have not been moved away yet.  
This observation indicates two properties.  First, each 
block has two roles, it is a source block when its objects 
are compacted  to some other block, and it can be a target 
block after its original data has been moved away.  
Second, in virtual non-LOS, multiple source blocks may 
compact into one target block, and thus the access to this 
target block should  be synchronized.   

In order to achieve high performance, the complex re-
lations between the blocks need to be clarified  before the 
compacting threads start.  To achieve this, we generate 
dependence DAG, such as the one in Figure 9, which cap-
tures all the data d ependencies between the blocks.  For 
instance, in virtual LOS, block 5 is the source block for 
block 4 and it is also the target block for block 7.  Thus, 
block 7 cannot be moved to block 5 until block 5 has been 
moved to block 4.  In virtual non-LOS, block 1 is the tar-
get block for block 3, and block 3 is also the target block 
for blocks 6, 9 and 10.  Thus, blocks 6, 9, and 10 cannot be 
moved to block 3 until block 3 has been moved to block 1.   

When compaction starts, the threads traverse the 
DAG to obtain a source block and a target block.  After 
the current data movement is done, the thread  moves 
down the DAG to obtain a new source block and set the 
old  source block to be the new target block.  This process 
finishes after the thread  has reached the leaf nodes of the 
DAG.  We have reduced the compaction parallelization 
problem into a DAG traversal parallelization problem.  
For virtual LOS compaction, the situation is simpler be-
cause one source block has only one target block, and vice 
versa. Therefore, the dependency DAG degenerates into 
dependence lists.  

4.2 Implementation of Parallel Large Object 
Compaction 

To demonstrate the effect of the parallel virtual LOS com-

paction algorithm, we implemented  the parallel compac-
tion algorithm presented  above in the Apache Harmony 
GC.  Before collection starts, a number of d isjoint depen-
dence lists are generated  to capture the dependence rela-
tionship among the large object blocks.  The pseudo-code 
of the dependency lists generation algorithm is shown in 
Figure 10: first, multiple collectors compete to grab the 
large objects from the heap; the accesses to the heap are 
guarded with atomic operations (Label 1).  Second, after 
obtaining a task, the collector thread  u pdates the glob-
al_target_address to allow other threads to continue (Label 
2).  At last, the collector computes the dependencies be-
tween the source and target blocks and inserts these 
blocks into the dependency lists (Label 3).     

global_target_address = heap_start;
for (each collector thread in parallel ){
Label1: // grab a large object

large_obj = pick_node_atomically(large_object_list);
obj_size = num_of_blocks (large_obj) * size_of_block;

Label2: //increment global_target_adress
do{
old_target_address = global_target_address;
new_target_address = old_target_address + obj_size;
temp = atomic_compxchg (global_target_address,

new_target_address, old_target_address);
}while( temp != old_target_address);

Label3: // build the dependency list
source_block = address_to_block_index( large_obj);
target_block = address_to_block_index( old_target_address);
for( i = 0; i++; i < num_of_blocks (large_obj) ){
insert_a_dependence_to_list(target_block, source_block);
target_block++;
source_block++;

}
} //loop back for next object

Figure 10: dependence list generation 

Figure 11 shows the pseudo-code of the parallel com-
paction process: each collector atomically grabs a depen-
dence list and works on it independently.  In this case, it 
only requires an atomic operation for each d ependency 
list instead  of for each block.  In essence, a thread  first 
acquires the ownership of a dependency list through an 
atomic operation. From the list, it gets the first block, 
which is the target block, and the second block, which is 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



8 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 

the source block, and moves the source to the target.  
When it finishes this block movement, the source block 
now becomes the target block and a new source block is 
obtained by taking the next block in the depen dency list.  
This operation repeats until there is no more block in the 
dependency list.  Then, the thread  obtains another d e-
pendency list from the task pool.  

Procedure Parallel_Large_Object_Compaction()
Begin
1.   dep_list = get_next_compact_dep_list();
2.   while(dep_list){
3.    target_block = get_first_block(dep_list);
4.    source_block = get_next_block(dep_list);
5.    while(source_block != NULL){
6.      memmove(target_block, source_block);
7.      target_block = source_block;
8.      source_block = get_next_block(dep_list);
9.     }
10.    dep_list = get_next_compact_dep_list();
       }
End

Figure 11: parallel large object compaction 

4.3 Implementation of Parallel Normal Object 
Compaction 

Packer u tilizes the Move-Compact algorithm from 
Apache Harmony JVM for normal object compaction [7].  
This algorithm involves three phases for parallel normal 
object compaction: live object marking, object moving, 
and reference fixing.    

Phase 1: Live object marking. It traces the heap from 
root set and marks all the live objects; 
Phase 2: Object moving. It copies the live objects to 
their new locations; 
Phase 3: Reference fixing. It ad justs all the reference 
values in the live objects to point to the referenced ob-
jects’ new locations.

Although the three phases are fu lly parallel, we only 
focus on the parallelization of the moving phase, which is 
most related  to our prop osed design.  In this phase, a col-
lector first atomically grabs a source block in heap ad -
dress order.  Then it grabs a target block that has lower 
address than the source block.  Each block is d ivided into 
multiple sectors that each encapsulates a number of live 
objects.  The sector size is the same size as the page size, 
which is usually 4 KB. For each sector of live objects in the 
source block, the collector computes its target address in 
the target block, moves the sector to its target position, 
and stores the address offset to the forwarding table in the 
block header.  When the target block has not enough 
space, the collector grabs the next target block.  When the 
source block has no more live objects, the collector grabs 
another source block in heap add ress order until all the 
blocks have been visited .  In this phase, two atomic opera-
tions are needed for one block to eliminate data races: one 
for taking the ownership of the source block, and the oth-
er for taking the ownership of the target block.  Note that 
this process can be seen as a parallel DAG traversal 
process. When a collector grabs a source block and a tar-
get block in heap address order, it is actually traversing 
from the top  of the DAG.  When it finishes the movement 
of data in the cu rrent source block, the source block is 
released  and can be used  as a target block in the next it e-

ration, thus the collector is indeed traversing down the 
dependency DAG until all blocks have been compacted .  
If multiple collectors try to grab the same target block, 
synchronization mechanism is necessary to coord inate 
their operations.  Note that in this three-phase algorithm, 
target address calculation and object movement is done in 
the same phase, thus the dependency DAG is generated  
dynamically instead  of pre-generated .   

4.4 Load Balance 
The parallel compaction algorithms would  achieve high 
performance only if the workload for each thread  is ba-
lanced.  However, load  imbalance can occur in dependen-
cy lists and DAG.  As shown in Figure 12, if there are two 
threads working on compaction, the work load  of thread  
1 would  be much higher than that of thread  2 due to the 
existence of a long d ependency list.  In this case, thread  2 
has to wait until thread  1 finishes its task.    

assigned to thread 1

assigned to thread 2

Dependency Lists

Figure 12: load imbalance in depdency lists 

To enhance parallelism, we introduce the load  bal-
ance algorithms in this section.  First, we have imple-
mented  a heuristics that counts the total number of d e-
pendency lists and  d ivides them into N  (number of 
threads) chunks and then collapses each chunk into a d e-
pendency list.  We call this approach Task Collapse, the 
main advantage of this approach is its simplicity.  It sim p-
ly counts the nu mber of dependency lists and d ivide the 
dependency lists equally among all collector threads.  
Thus, it does not have to traverse all dependence lists to 
count the number of blocks.  However, the d isadvantage 
of this design is that if the dependency lists are highly 
imbalanced, Task Collapse may not perform well because it 
may collapse several long lists into one list and several 
short lists into another. 

In cases where the dependency lists are highly imba-
lanced. We can use a more sophisticated  Task Pushing load  
balance approach [13].  For instance, when a dependency 
list gets too long or when there are always one or two 
disjoint sub-DAGs generated  after the root block is filled , 
the work load  between threads would  be imbalanced. 
Our Task Pushing design can solve this problem by using 
virtual target blocks.  To break long lists, we can use a 
virtual target block for one of the blocks in the middle of 
the list, and thus this virtual target block breaks the long 
list into two halves. The virtual target block also serves as 
the new root of the newly created  dependency list. To 
implement this virtual target block, we move the source 
block to a reserved region (the virtual block) such that the 
source block no longer depends on another block and 
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becomes a root block.  Then after compaction finishes, 
this block in the reserved region (the virtual block) can be 
thrashed.  For more details of the design and implementa-
tion of Task Pushing, please refer to [13]. 

For instance, in Figure 12, the third  depen dency list is 
too long.  Using Task Pushing, we can break the third  d e-
pendency list into two halves, such that we move the 
third  block to a reserved region rsv and  make rsv depend 
on the second block, so rsv becomes the tail of third  d e-
pendency list.  Next, since now we have two copies of the 
third  block, the third  block no long depends on the 
second block, thus we create a new dependency chain to 
hold  the third  block and whatever comes after it.  

This algorithm can be applied  to dependency DAG as 
well, but instead  of breaking a long d ependency list, we 
break a dependency DAG into sub-DAGs and assign each 
sub-DAG to a thread .  The pseudo-code is shown in Fig-
ure13, where Wi is the local working set of collector Ci.
This algorithm applies the idea of Task Pushing, such that 
a collector pushes its excessive tasks to other id le collec-
tors (line 17).  When all the collectors have no more tasks, 
the execution finishes.  Otherwise, the collectors will loop 
back to check if other collectors have pushed new tasks to 
their local working sets.   

1.  while(working set Wi is not empty){
2.    Noderoot = get_node_from_set(Wi);3.  foreach (Nodechild  Noderoot's children) {4.    move_data(Noderoot, Nodechild);5.    decrement num_of_parents of Nodechild;6.    if (num_of_parents of Nodechild == 0)7.      put_node_to_set(Wi, Noderoot)8.    }
9.    remove Noderoot from the tree;10.    if(Wi is empty) break;11.    foreach (collector Ck  other collectors){12.      if (collector Ck has no task){13.        if (Wi has only one tree){14.     break it into subtrees;
15.   }
16.   Noderoot = get_node_from_set(Wi);17.   put_node_to_working_set(Wk, Noderoot);18. }
19.    }
20. }
21. if (all collectors come to here) // barrier
22.   exit;
23. else goto step 1

Figure 13: load balance algorithm for parallel compaction 

5 EXPERIMENTS AND RESULTS
In this section, we present our experiment results for ou r 
Packer algorithm.  All proposed algorithms have been 
implemented  in Apache Harmony, a product-quality 
open source JAVA Virtual Machine [10].  The heap is d i-
vided into equal-sized  blocks, and each block contains a 
block header for its metadata, including block base ad -
dress, block ceiling address, block state, etc.  Block size is 
adjustable, but the block header size is a constant and 
independent of the block size.  For this study, the block 
size is set to 32 KB and the size threshold  for large objects 
is set to 16 KB.  The evaluation of Packer is done with the 
SPECjbb2005 [11] and Dacapo [12] benchmark suites.  
SPECjbb2005 is a large server benchmark that em ploys 
several program threads; it is representative of commer-

cial server-side applications.  On the other hand, Dacapo 
is a su ite of client-side Java applications.  For all experi-
ments, we use a 256 MB heap by default.

In these experiments, we compare th ree GC designs: 
GC-MC, GC-MS, and Packer.  GC-MC is the default GC 
algorithm in Apache Harmony and it u tilizes the Move-
Compact algorithm for garbage collection. It d ivides the 
heap into separate spaces: Large Object Space (LOS) and 
non-LOS, to manage large and normal objects.  However, 
this algorithm can not be parallelized  for the compaction 
of large objects.   For GC-MC, with a heap size of 256M, 
we experimented  with four configurations: GC-MC with 
50M LOS (GC-MC 50M), GC-MC with 100M LOS (GC-
MC 100M), GC-MC with 150M LOS (GC-MC 150M), and 
GC-MC with 200M LOS (GC-MC 200M).  GC-MS uses 
Mark-Sweep for the garbage collection of the whole heap.  
Packer manages virtual LOS and virtual non -LOS in the 
same heap, and enables the parallelization of both normal 
and  large object compactions.     

5.1 Comparison of Space Utilization 
In real applications, the object size d istribution varies 
from one application to another and from one execution 
phase to next even in one application.  For instance, 
SPECjbb2005 is a non-large-object-intensive benchmark 
that allocates a very small number of large objects, thus it 
requires a large non-LOS. On the other hand, xalan, jy-
thon, and bloat from the Dacapo benchmark suite are 
large-object-intensive thus requiring a large LOS. In add i-
tion, SPECjbb2005 allocates all the large objects at the be-
ginning of its execution and  very few large objects after-
wards.  Thus in d ifferent phases of its execution, it re-
quires d ifferent sizes for LOS.

Figure 14 shows the space u tilization of d ifferen t de-
signs.  Note that in this paper we define space u tilization 
as the percentage of heap space usage when GC occurs.  
For example, if the heap size is 512 MB, and at the time 
when GC occurs, 500 MB of the heap space is u sed  and 12 
MB of the heap space is free, then the space u tilization is 
97.7%.   The results show that Packer guarantees the heap 
space is fu lly u tilized  because collection is triggered  only 
when there is no free region in the Free Area Pool.  The 
average space u tilization of GC-MS is 81%.  For lusearch, 
the space u tilization is only 49%, which is caused by 
heavy fragmentation.  The average space u tilization ratios 
are 78%, 69%, 49%, and 26% for GC-MC 50M, GC-MC 
100M, GC-MC 150M, and  GC-MC 200M respectively.  
Usually, most objects are normal objects. Hence when 
LOS gets too big, there is insufficient space for normal 
object allocation, causing frequent garbage collections and 
low space u tilization.  Nonetheless, for xalan, GC-MC 
space u tilization is maximized when LOS size is 100M.  
This is because xalan is a large-object-intensive applica-
tion, which contains a large number of large objects when 
garbage collection happens.  In general, space u tilization 
is worse when the heap is statically partitioned into mu l-
tiple spaces.  Static partition fails to meet the needs of 
large object and  non-large object space u tilization, pre-
cisely because this is a dynamic behavior.  On the other 
hand, although GC-MS does not suffer from this problem, 
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it creates a heavy fragmentation problem, often leading to 
low space u tilization.  By managing multiple virtual spac-
es in one physical space, Packer overcomes all these prob-
lems.  
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Figure 14: space utilization of GC-MC, GC-MS, and Packer 

5.2 Sequential Performance 
Table 1 shows the single-thread  performance of Packer, 

GC-MS, and GC-MC, including the number of garbage 
collection events triggered  throughout execution (left col-
umn) and the total GC pause time (right column).  The 
first observation is that Packer always triggers fewer gar-
bage collections compared to other designs. This is be-
cause Packer guarantees that the heap is fu lly u tilized .  
The second observation is that some applications fail to 
finish execution, as those d enoted  “F” in the table. For 
SPECjbb and hsqldb, some GC-MC configurations with 
large LOS size fail to complete because they do not have 
sufficient space for normal object allocation.  In addition, 
for hsqldb, GC-MS fails to complete because of heavy 
fragmentation.  This happens when it can not find  su ita-
ble free region in the heap for the newly allocated  object.  
The third  observation is that GC-MS usually has lower 
pause time than both Packer and GC-MC.  One extreme 
case is pmd, in which GC-MS’s pause time is only 1/ 11 of 
that of Packer.  This is because Mark-Sweep does not in-
volve any object movement, which may incur a high per-
formance overhead.   

TABLE 1: GC PAUSE TIME COMPARISON OF PACKER, GC-MS, AND GC-MC

Packer GC-MS GC-MC 50M GC-MC 100M GC-MC 150M GC-MC 200M
bloat 126 1236 133 206 189 1557 236 1573 355 1780 756 2568
chart 51 601 52 69 59 605 78 642 117 700 234 883

eclipse 199 1863 206 1602 291 2427 225 2048 338 2670 845 5474
hsqldb 32 1410 F F 44 2085 125 5975 F F F F
Jython 190 1109 266 436 232 1259 303 1396 455 1686 918 2573
luindex 11 87 13 10 14 90 18 97 27 105 53 127
lusearch 84 3389 175 3465 100 3707 134 4323 203 5553 416 9331

pmd 74 982 74 87 83 1002 100 1036 148 1135 290 1392
SPECjbb 39 1204 41 1160 119 3927 F F F F F F

xalan 324 1578 285 616 700 233 283 1506 329 1605 707 2349

5.3 Scalability of Packer 
To demonstrate the effect of Packer ’s parallel compac-

tion algorithms, we compare the scalability of Packer and  
GC-MS with 1, 2, 3, and 4 threads. As shown in Figures 15 
and 16, the Y-axis of these figures represents the norm a-
lized  total GC pause time.    Figure 15 shows Packer ’s 
scalability.  In general, Packer demonstrates very good 
scalability.  On average, the speedups of Packer are 1.92x, 
2.64x, and 3.15x respectively with 2, 3, 4 collectors. 0
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Figure 15: Packer scalability 
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Figure 16: mark-sweep scalability 

Figure 16 shows GC-MS’s scalability.  Compared to 
Packer, GC-MS’s scalability is lower.  On average, the 
speedups of GC-MS are 1.5x, 1.72x, and 1.64x respectively 
with 2, 3, 4 collectors. Note that the average speedup for 
the 4-thread  case is actually lower than that of the 3-
thread  case.  This is because for some benchmarks, such 
as lusearch and lu index, the 4-thread  case introduces long 
pause time.  This is particularly true for lusearch, where 
the pause time for the 4-thread  case is much higher than 
the sequential case due to the heavy fragmentation in 
these applications.  When fragmentation is serious, gar-
bage collections become much more frequent and the 
elapsed time between two garbage collections is very 
short.  Hence, only a small number of objects are allocated 
and collected  in each allocation-collection period .  Under 
this situation, synchronization overhead becomes the m a-
jor component of the GC pause time, negatively impact-
ing GC performance.   For other applications with low 
degree of fragmentation, such as xalan and SPECjbb, the 
speedups are comparable to those of Packer.     

Figure 17: comparison of parallel Packer and GC-MS

Table 1 indicates that in the sequential case, Mark-
Sweep is more efficient than compaction algorithms be-
cause it does not involve the movement of objects.  Nev-
ertheless, as the number of threads increases, Packer 
gradually takes the performance advantage over GC-MS 
due to better scalability.  As an illustration, in Figure 17 
we compare the performance of parallel GC-MS and 
Packer on jython.  It clearly shows that although GC-MS’s 
GC pause time is only 1/ 3 of that of Packer in the sequen-
tial case, these two nu mbers converge as the number of 
threads increase.         

5.4 Impacts on Overall Performance 
This section presents how Packer impacts the perfor-
mance of the overall program execution.  To collect this 
data, we run the respective benchmarks on an Intel 8-core 
Tulsa platform and compare the performance of Packer, 
GC-MC, and GC-MS.  For GC-MC, we manually opti-
mized the LOS size to maximize space and time efficiency 
for each application.  Figure 18 shows the results on 
SPECjbb.  The X-axis shows the number of warehouses 
used  in execution and the Y-axis shows the normalized  
SPECjbb score, a higher score represents higher perfor-
mance.  To generate these results, we repeated  the exp e-
riments for ten times and presented  the average results. 
Packer ’s performance is consistently 1.2% higher than 
that of GC-MS.  Although this seems to be a very small 
performance gain, but considering that garbage collection 
only takes about 10% of the total execution time, this 
would  translate into 12% GC performance improvement, 
which is a significant amount.  Also, Packer ’s perfor-
mance is higher than that of GC-MC, but the advantage is 
not obvious. This is because both GC-MC and Packer u til-
ize the same algorithm for normal object compaction and 
SPECjbb2005 is not a large-object-intensive benchmark. 

Figure 18: impacts on SPECjbb 2005 overall performance 
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Figure 19: impacts on Dacapo overall performance 

Figure 19 presents the results with the Dacapo bench-
mark suite.  Compared to SPECjbb, jython and bloat are 
large-object-intensive.  Packer ’s performance is 3% higher 
than that of GC-MS and 8% higher than that of GC-MC.  
Note that in GC-MC, large object compaction is not paral-
lelized .  Thus in sequential case, the Mark-Sweep algo-
rithm has better performance than compaction in large 
object garbage collection.  Nevertheless, with the parallel 
large object compaction algorithm proposed in this paper, 
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compaction can be more efficient. 

5.5 Load Balance  
In our study on LOS load balance with xalan, we found 
that the max length of a dependency list was 48, while the 
majority (78%) of dependency lists contained  only one 
moving task (only one source block and  one target block). 
This result has two implications: First, without optimiza-
tion, the dependency lists may be imbalanced  such that 
there were several long lists and a large amount of short 
lists, and the long lists became the performance bottle-
neck since they could  only be executed  sequentially. 
Second, it required  an atomic operation to fetch a depen-
dency list, when the list contained only one block, then 
the performance gain could  be very low. Actually, we 
found out that this overhead was 38%, that is, if the task 
takes 100 cycles to move a block, then the synchronization 
overhead to fetch this task is 38 cycles on average.   

In another study on non-LOS load balance with 
SPECjbb2005 benchmark, we found out that the maxi-
mum depth of a dependence DAG was 353 while the av-
erage depth was only 22.3. Also, the maximum number of 
child  nodes for each node was 20 while the average was 
1.5.  This implies the possibility of the existence of some 
huge DAG that contained a large number of nodes, along 
with some small DAGs that contained only few nodes.  

To address these problems, in Section 4.4 we have in-
troduced two load balance algorithms Task Collapse and  
Task Pushing. In our experiments, we found  that Task Col-
lapse is sufficient for most benchmark programs.  Since 
Task Pushing needs to go through all dependency lists, it 
introduces a fairly high overhead.  It would  bring per-
formance gain only when its overhead can be significan t-
ly amortized .  Therefore, Task Pushing is su itable for large 
server applications that require a large heap size (~10 
GB).    

6 CONCLUSIONS AND FUTURE WORK
Space and time efficiency are the two most important d e-
sign goals in GC design.  However, many garbage collec-
tion algorithms trade space u tilization for performance 
and vice versa.  In this paper, we proposed Packer, a nov-
el garbage collection algorithm that manages multiple 
virtual spaces in one physical space, thereby guaranteeing 
the space is fu lly u tilized  while avoiding the fragmenta-
tion problems.  To improve performance, we first reduced 
the heap compaction parallelization problem into a paral-
lel DAG traversal problem, and then designed solu tions 
to eliminate false sharing and to reduce the syn chroniza-
tion overhead .  It is noteworthy that Packer is generic 
enough to be used  in any situation that involves the man-
agement and coordination of multiple virtual spaces in 
one physical space and vice versa.     

The experiment results show that Packer has much bet-
ter space u tilization than GC-MC and GC-MS.  Also, the 
parallel compaction algorithms in Packer d emonstrate 
great scalability.  Although GC-MS has lower GC pause 
time than Packer in the sequential case, as the number of 
threads increases, Packer gradually takes the performance 

advantage over GC-MS due to better scalability.  In add i-
tion, we evaluate Packer ’s impact on the overall perfor-
mance.  Note that although GC only takes about 10% of 
the total execution time in the application programs, 
Packer is able to achieve 1.2% and 3% performance gain 
over GC-MS in the SPECjbb and Dacapo benchmark 
suites, which translates into about 12% and 30% reduction 
of GC times, respectively. Hence, our results demonstrate 
that Packer is highly space-and-time efficient.     

Our ongoing work is three-fold : first, we plan to apply 
Packer in more GC designs. Specifically, w e intend to im-
plement a generational Packer, which consists of a physi-
cal Nursery Object Space (NOS), a virtual Large Object 
Space (LOS), and a virtual Mature Object Space (MOS).  
In minor collection, live normal objects are copied  from 
NOS to virtual MOS, and virtual LOS can be marked and  
swept. Then in major collection, the fu ll heap is com-
pacted .  In the next step, we would  attempt to manage 
virtual NOS, virtual MOS, and virtual LOS in one physi-
cal space, thereby achieving a generational GC with fu lly 
virtualized  space management. 

Second, we plan to test the proposed parallel compac-
tion algorithms on high-end commercial servers that con-
sist of tens of cores and >10 GB of memory.  A key chal-
lenge in this new setting is to maintain the scalability of 
these algorithms, thus one essential component is the load  
balance algorithm, such as Task Pushing.   

Finally, as d iscussed  in subsection 3.4, the Packer con-
cept can be applied  to pinned object management, the 
management of managed and native data in the same 
heap, and the management of d iscrete physical areas.  We 
aim to apply the virtual spaces design in these areas. 
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