
IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 1

Packer: Parallel Garbage Collection Based
on Virtual Spaces

Shaoshan Liu, Jie Tang, Ligang Wang, Xiao-Feng Li, and Jean-Luc Gaudiot, Fellow, IEEE

Abstract—the fundamental challenge of garbage collector (GC) design is to maximize the recycled space with minimal time
overhead. For efficient memory management, in many GC designs the heap is divided into large object space (LOS) and
normal object space (non-LOS). When either space is full, garbage collection is triggered even though the other space may still
have plenty of room, thus leading to inefficient space utilization. Also, space partitioning in existing GC designs implies different
GC algorithms for different spaces. This not only prolongs the pause time of garbage collection, but also makes collection
inefficient on multiple spaces. To address these problems, we propose Packer, a parallel garbage collection algorithm based on
the novel concept of virtual spaces. Instead of physically dividing the heap into multiple spaces, Packer manages multiple virtual
spaces in one physical space. With multiple virtual spaces, Packer offers efficient memory management. With one physical
space, Packer avoids the problem of inefficient space utilization. To reduce the garbage collection pause time, we also propose
a novel parallelization method that is applicable to multiple virtual spaces. Specifically, we reduce the compacting GC
parallelization problem into a DAG (discreted acyclic graph) traversal parallelization problem, and apply it to both normal and
large object compaction.

Index Terms—garbage collection, Java Virtual Machine, memory management, parallel systems

—————————— ——————————

1 INTRODUCTION
arbage collection technology has been widely used
in managed runtime systems, such as Java virtual
machine (JVM) and Common Language Runtime

(CLR) systems. For efficient memory management, a
modern high performance garbage collector (GC) usually
manages large and normal objects separately such that
the heap is d ivided into large object space (LOS) and non-
large object space (non-LOS). However, the object size
d istribution varies from one application to another and
from one execution phase to the next even in one applica-
tion, thus it is impossible to predefine a proper heap pa r-
titioning for LOS and non-LOS. Existing GCs with sepa-
rate allocation spaces mostly suffer from the problem that
they do not fit well with the run-time variation of the ob-
ject size d istribution at runtime. This problem leads to
imbalanced space u tilization and thus negatively impacts
the overall GC performance. For garbage collection algo-
rithms, conventional mark-sweep and reference counting
collectors are susceptible to fragmentation. To address
this problem, copying or compacting GCs are introduced.
Compaction eliminates fragmentation in place by grou p-
ing live objects together in the heap and freeing up large
contiguous spaces for fu ture allocation. As multi-core

architectures prevail, parallel compaction algorithms have
been designed to achieve better time efficiency. However,
large object compaction is hard to parallelize due to
strong data dependencies such that the source object can
not be moved to its target location until the object orig i-
nally in the target location has been moved out. The par-
allelism seems inadequate when there are few large ob-
jects.

In this paper, we propose Packer, a parallel garbage
collection algorithm based on the novel concept of virtual
spaces. Unlike some conventional garbage collectors [2]
which physically d ivide the heap into multiple spaces,
Packer manages multiple virtual spaces in one physical
space. With multiple virtual spaces, Packer offers the ad -
vantage of efficient memory management, so that d iffer-
ent virtual spaces can employ best su itable collection a l-
gorithms. With one physical space, Packer avoids the
problem of inefficient space u tilization, since there is no
space partitioning problem any more.

Object allocation is highly efficient in Packer. The free
space in the physical heap is centrally controlled by a
DAG structure. When one of the virtual spaces needs
more space, then it searches the DAG to fetch a su itable
free region. In particular, normal object allocation is done
in thread local blocks with bump -pointers, requiring no
synchronization. Garbage collection is triggered only
when the heap contains no free region, thus guaranteeing
that the heap is fu lly u tilized . Packer supports both com-
paction and mark-sweep for large objects. Hence, it in-
corporates the advantages of both the Mark-Sweep and
Compaction algorithms, and is able to achieve high per-
formance when either algorithm is su itable. To further
reduce the garbage collection pause time of Packer, we
reduce the compacting GC parallelization problem into a

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

Shaoshan Liu is with Microsoft. E-mail: shaoliu@microsoft.com
Jie Tang is with the School of Computer Science and Technology, Beijing
Institute of Technology. E-mail: tangjie.bit@gmail.com
Ligang Wang is with the Intel China Research Center. E-mail: li-
gang.wang@intel.com
Xiao-Feng Li is with the Intel China Research Center. E-mail:
xiao.feng.li@intel.com
Jean-Luc Gaudiot is with the Department of EECS, University of Califor-
nia, Irvine. E-mail: gaudiot@ uci.edu

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

G

Digital Object Indentifier 10.1109/TC.2011.193 0018-9340/11/$26.00 © 2011 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

DAG (discrete acyclic graph) traversal parallelization
problem, and apply it to both normal and large object
compaction.

In this paper we present the design details of the pro-
posed algorithms and evaluate their efficiencies. These
algorithms are implemented in Apache Harmony [10], a
product-quality open source JAVA SE implementation.
The rest of the paper is organized as follows. Section 2
d iscusses the related work. Section 3 introduces the basic
algorithm designs of Packer. Section 4 presents the para l-
lelization of normal and large object compaction. Section
5 presents the evaluation results with SPECjbb2005 and
Dacapo benchmark suites. Finally, section 6 summarizes
the project and d iscusses fu ture work.

2 RELATED WORK
As exemplified by the LISP2 algorithm [5], compaction
algorithms are u tilized in GC designs to address the d is-
advantages of mark-sweep algorithms. However, com-
paction usually imposes lengthy pause time. To reduce
pause time, several parallel compaction algorithms have
been proposed. Flood et al. [6] present a parallel compac-
tion algorithm that runs three passes over the heap. First,
it determines a new location for each object and installs a
forwarding pointer, second it fixes all pointers in the heap
to point to the new locations, and finally, it moves all ob-
jects. To make this algorithm run in parallel, the heap is
split into N areas such that N threads are used to compact
the heap into N/ 2 chunks of live objects. The main d is-
advantage of this design is that the resulted free space is
noncontiguous. Abuaiadh et al. [7] propose a three-
phase parallel compactor that uses a block-offset array
and mark-bit table to record the live objects moving d is-
tance in blocks. Kermany and Petrank [8] propose the
Compressor that requires two phases to compact the
heap; also Wegiel and Krintz [9] design the Mapping Col-
lector with nearly one phase. Both approaches depend on
the virtual memory support from the underlying operat-
ing system.

It has been empirically observed that in many pro-
grams, the most recently created objects are also those
most likely to become unreachable quickly. Generational
GCs leverage this property and d iv ides objects into gen-
erations [18]. In this case, separate memory regions are
used for objects of d ifferent generations. For example, the
heap can be d ivided into a nursery object space (NOS) to
store newly created objects and a mature object space
(MOS) to store mature objects, i.e. the objects that survive
one or more collections. When NOS becomes fu ll, GC
happens in NOS and moves those few live objects to
MOS, and the entire NOS region can then be overwritten
with fresh objects; and we call this a minor collection.
Semi-Space GC is another technique that exploits the
temporal localities of objects [29]. In Semi-Space GC de-
signs, the heap memory is d ivided into two equally-sized
regions: the from -space and the to-space. During normal
execution, the mutator allocates new objects from from-
space. Eventually, continued allocation exhausts from -
space causing the program to be suspended while the

collector reclaims memory. Using the Semi-Space concept,
Fenichel and Yochelson designed a Lisp Garbage Collec-
tor [19], in which the heap is d ivided into two regions.
Only one of the two regions is used at any time. Objects
are allocated in one region until the space has been ex-
hausted . Then all objects are moved to the other region,
being placed side by side, so that there is no memory
fragmentation in the newly copied region. Although this
scheme is better in pause time, it is worse in space cost
than other algorithms. Other well-known GC designs that
use this concept include Baker ’s collector [20], Brooks’s
collector [21], and the Train collector [22]. Specifically,
Baker ’s and Brooks’s techniques use a read barrier, which
is not very efficient. The Train collector can run with very
low space overheads. It can suffer from large remembered
sets, though there are proposals on limiting that space
overhead.

Early efforts on designing parallel collectors include
Halstead’s collector for Multilisp [16]. The Multilisp col-
lector, however, has problem scaling because it does not
load -balance the collection work. Cheng and Blelloch [15]
introduced a parallel, real-time garbage collector which is
designed for shared -memory multiprocessors. It can re-
duce excessive interleaving, hand ling stacks and global
variables, reduce double allocation and special treatment
for large and small objects. By making all aspects of the
collector incremental and allowing an arbitrary number of
application and collector threads to run in parallel, they
were able to achieve tight theoretical bounds on the pause
time for any application threads as well as bound the total
memory usage. Appel et al. presented a parallel copying
collector intended to run on conventional machines [24].
Their scheme takes advantage of virtual memory hard -
ware. They require intervention when the page on which
an object resides is first accessed (either written or read),
whereas our scheme requires intervention only when the
page is first written, and then only if the operating system
does not allow use of hardware d irty bits. Since their a l-
gorithm also copies list structures breadth -first, and thus
does not preserve locality in list structures, this may result
in a flurry of such intervention at the beginning of a col-
lection. Similarly, Demers et al. introduced a parallel col-
lection algorithm based on virtual checkpoints imple-
mented with a copy-on-write strategy [25]. The algorithm
does not incur the copying overhead, is typically easier to
implement, and requires no additional memory. Also,
DeTreville introduced a parallel trace-and -sweep collector
which uses virtual memory hardware instead of exp licit
mutator cooperation [26]. His collector requires that
slightly less work be performed while the mutator is
stopped but, it requires that the collector be notified on
initial read accesses by the mutator. In [23], Boehm et al.
rely on virtual memory hardware to provide information
about pages that have been updated or ‘‘d irtied’’ during a
given period of time. This method has been used to con-
struct a mostly parallel trace-and-sweep collector that
exhibits very short pause times.

Moreover, Endo et al. [14] introduced a parallel stop-
the-world GC algorithm using work stealing. Their algo-
rithm depends on threads w ith work copying some work

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

LIU ET AL.: PACKER: PARALLEL GARBAGE COLLECTION BASED ON VIRTUAL SPACES 3

to auxiliary queues, where the work is available for stea l-
ing. Threads without work look for an auxiliary queue
with work, lock the queue, and steal half of the queue's
elements. Halstead describes a multiprocessor GC for
Multi-Lisp [27]. Each processor has its own local heap,
and they use lock bits for moving and updating forward -
ing pointers. Load balancing is done stat ically rather than
dynamically. Steensgaard explored a clever method for
partially parallelizing collection [28]: Compile-time analy-
sis identifies allocation sites that allocate objects that nev-
er escape the allocating thread (are never accessible to oth-
er threads.) Such objects are allocated in a thread-local heap,
which can be collected independently of other threads.
This technique avoids the synchronization issues that
general parallel collection must address, but requires ex-
tensive and expensive static analysis, and only a subset of
objects may be collected thread -locally. Flood and Detlefs
used a lower-overhead work-stealing mechanism [6], and
by addressing the harder problem of parallelizing reloca t-
ing collectors, not just a non -relocating mark-sweep algo-
rithm. They balance the work of root scanning, using stat-
ic overpartitioning, and also to balance the work of tracing
the object graph, using a form of dynamic load balancing
called work stealing. They use this infrastructure to paral-
lelize two well-known collection schemes: a two-space
copying algorithm (semispaces) and a mark-sweep algo-
rithm with slid ing compaction (markcompact).

For efficient memory management, Caudill and Wirfs-
Brock first propose to use separate spaces to manage ob-
jects of d ifferent sizes, large object space (LOS) for large
objects and non-large object space (non-LOS) for normal
objects [1]. Hicks et al. have done a thorough study on
large object spaces [2]. The results of this study indicate
three problems for LOS designs. First, LOS collection is
hard to parallelize. Second , LOS shares the same heap
with non-LOS, thus it is hard to achieve fu ll u tilization of
the heap space. Third , LOS and non-LOS collections are
done in d ifferent phases, which may affect the scalability
of parallel garbage collection. In [3], Soman et al. d iscuss
about applying d ifferent GC algorithms in the same heap
space, but their work does not involve dynamically ad -
justing the heap partitioning. The study done by Barrett
and Zorn [4] is the only known publication that studies
space boundary ad justment, and their work aims at meet-
ing the resource constraints such as pause time. By con-
trast, Packer does not require any boundary adjustment
mechanism. Instead , it manages d ifferent virtual spaces
in the same physical space such that it avoids the problem
of inefficient space u tilization while keeping the advan-
tage of efficient memory management.

3 BASIC ALGORITHM DESIGNS IN PACKER
In this section, we first introduce the basic heap design of
Packer and compare it to other heap designs. Then we
present the data allocation scheme and garbage collection
algorithm in Packer. At last, we d iscuss further implica-
tions of the Packer design.

3.1 The Basic Design of Packer
As shown in Figure 1, with the Move-Compact algorithm
(GC-MC), when the heap is partitioned into multiple
spaces, for instance LOS and non-LOS, garbage collection
is triggered when either space is fu ll. In times when gar-
bage collection is triggered by one space while the other
space is partially filled , the heap is not fu lly u tilized . This
leads to frequent collections and lower performance.

LOS Non-LOS
Allocated LOS space

Allocated non-LOS space

Free space

Figure 1: compacting GC (GC-MC) with separate allocation spaces

The key question here is why one space would get fu ll
before the other one does. This is because within the
same amount of time, a higher fraction of one space’s free
region is allocated than that of the other space, yet the free
regions of d ifferent spaces can not be easily shared .
Hence, if the free regions of the heap are centrally con-
trolled and can be shared by both spaces, then the prob-
lem of low space u tilization can be solved. However, this
is not possible when a heap is physically partitioned into
two spaces with a boundary in between. Because it re-
quires the GC algorithm for one space virtually manage
the regions of another space when its own space is fu ll.
For instance, as shown in the lower part of Figure 1, if
LOS is fu ll, we cannot allocate large objects in the free
region of non-LOS. Otherwise, we destroy the advantage
brought by separate spaces, namely, efficient memory
management.

Allocated large objects

Allocated normal objects

Free space

Free List

Figure 2: mark-sweep GC (GC-MS)

On the other hand, Mark-Sweep algorithm (GC-MS)
does not d ivide the heap into separate spaces thus both
normal and large objects share the same allocation space.
When garbage collection is triggered , it scans the heap
and marks all live objects. Then it sweeps all the u n-
marked objects, leaving holes in the heap. These holes are
then added into a linked list for fu ture allocations. Al-
though this algorithm is efficient and does not require
object movement, it introduces several serious problems.
As shown in the lower part of Figure 2, in cases when
fragmentation is very serious, it is unable to find a hole
on the linked list to fit a newly allocated object, such as
the one at the bottom of Figure 2, even though the heap

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

has about 50% of free space. This creates a “dead lock”
situation, in which compaction has to be initiated in order
to alleviate the problem. In addition, GC-MS’s allocation
scheme breaks the spatial locality: when it allocates sev-
eral objects that are meant to be accessed continuously, it
has to allocate these objects sparsely all over the heap.
Furthermore, for the allocation of each object, it has to
traverse the free-region linked list until it finds a su itable
free region.

Virtual non-LOS

Virtual LOS

Allocated LOS space

Allocated non-LOS space

Free space

Free Area Pool

1
2
3
…. …..

>32

1 3 954 6 7 8 10 11 122

Free region list

Virtual non-LOS list

Virtual LOS list

Heap

Figure 3: the design of heap structure in Packer

Packer is able to solve these problems by managing
multiple virtual spaces in one physical space, such that
these virtual spaces can share the free regions. As shown
in Figure 3, to coordinate data management in Packer, we
u tilize three data structures: a virtual non -LOS list, a vir-
tual LOS list, and a Free Area Pool. The virtual non -LOS
list points to the first normal object block in the heap, and
this block contains a pointer that points to the next nor-
mal object block, and so on. Hence, it is easy to find all
normal blocks through this virtual non -LOS list, and they
form the virtual non-Large Object Space. Similarly, the
virtual LOS list points to the first large object, and this
large object contains a pointer to the next large object, and
so on. The virtual LOS list and the blocks of large objects
form the Large Object Space.

The Free Area Pool manages all free blocks in the heap,
and it is actually a table of linked lists indexed by the
number of blocks. Each linked list in the Free Area Pool
manages all free regions with a certain number of cont i-
guous blocks. For instance, blocks 2 and 7 in Figure 3 are
both free regions with only one block. Hence slot 1 of the
Free Area Pool contains a pointer to block 2, and block 2
contains a pointer to block 7. Also, blocks 10, 11, and 12
form a contiguous free region, and thus slot 3 of the Free
Area Pool contains a pointer to block 10. For all free re-
gions that contains more than 32 free blocks, Packer org a-
nizes them in slot >32. With this design, the virtual spac-
es can grow based on need and garbage collection only
happens when the whole heap is fu lly u tilized .

3.2 Object Allocation in Packer
When multiple threads are running in an application,
they share the heap resources thus accesses to the Free
Area Pool for object allocation need to be synchronized .
However, if one atomic operation is required for each ob-
ject allocation, then the overhead would be tremendous.
In most applications, the majority of objects are normal

objects which are much smaller than the block size (set to
32 KB by default). Thus it is essential to have an efficient
allocation scheme for normal objects.

The Mutator thread is responsible for object alloca-
tion. To reduce the synchronization overhead, each Muta-
tor fetches a thread local block from the Free Area Pool
through an atomic operation, and then allocates normal
objects on this thread local block with bump-pointer allo-
cation. As shown in Figure 4: first, it finds out the poin-
ters to the unoccupied region and the boundary of the
block. Next it checks whether the block contains enough
space to hold the new object. If so, it updates the free
pointer to point to the new unoccupied region on the
block. Otherwise, it returns NULL and forces the mutator
to fetch another block from the Free Area Pool.

1. free = allocator->free;
2. ceiling = allocator->ceiling;
3. new_free = free + size;
4. if (new_free <= ceiling){
5. allocator->free= new_free;
6. return free;
7. }
8. return NULL;

Figure 4: normal object allocation from the thread local block

To guarantee fast normal object allocations, Packer
only allocates thread local block from slot 1 or slot >32 in
the Free Area Pool. It first checks if slot 1 is null, if not, it
allocates from slot 1; otherwise it allocates from the last
slot, slot >32. If both slot 1 and slot >32 are null, then
scans down the table and tries to allocate from slot 2, slot
3, and so on. In these cases, it only requires one atomic
operation for each thread local block. When picking the
thread local block from slot 1, one atomic operation is
enough because it never needs to put back the rest. For
thread local block allocation in slot >32, instead of remov-
ing a region, Packer simply reduces the nu mber of blocks
of a region in the last slot. This reduction operation is
atomic thus it guarantees thread -safe block allocation and
only one atomic operation is needed. On the other hand,
to grab a region from other slots, Packer needs to pick off
the region, allocate a block, and put back the rest into the
corresponding slot, which requires two atomic opera-
tions.

Different from normal objects, each large object occu-
pies one or more blocks. Thus, the Mutators d irectly allo-
cate large objects in the Free Area Pool. As shown in Fig-
ure 5, when there is an allocation request, a Mutator first
checks the number of blocks requested , block_count. Then
it searches the Free Area Pool to check whether there is
any freed region with block_count or more free blocks us-
ing block_count as index. If such a free region can be
found, the mutator updates the block status to
BLOCK_USED, as well as updates the block header in-
formation. Otherwise, garbage collection should be trig-
gered .

Figure 6 shows the search algorithm in the Free Area
Pool: it requests one free block but slot 1 is Null. Then it
searches down and fetches a free region in slot 2. This
free region contains free blocks 1 and 2. Packer allocates

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

LIU ET AL.: PACKER: PARALLEL GARBAGE COLLECTION BASED ON VIRTUAL SPACES 5

block 1 and stores block 2 back into the Free Area Pool.
With this design, Packer can achieve fast object allocation
for both the large and normal objects.

1. block_count = NUM_BLOCK_FOR_SIZE(size);
2. block= free_regions_alloc_block(block_count);
3. if(block != NULL){
4. block->status = BLOCK_USED;
5. block->num_multi_block = block_count;
6. return block->base;
7. }
8. return NULL;

Figure 5: large object allocation

1
2 Null
3
…. ….
>32 Null

1

21 Null
2
3
…. ….
>32 Null

1 2
Allocated

Free Area Pool Free Area Pool

Figure 6: block allocation from the Free Area Pool

3.3 Garbage Collection in Packer
When the heap is fu lly occupied , garbage collection is
triggered . Packer u tilizes compaction algorithms, and its

garbage collection is d ivided into four phases. In the first
phase, it scans the heap and marks all live objects, then it
builds the virtual spaces by adding all normal blocks into
the virtual non-LOS linked list, and all large blocks into
the virtual LOS linked list. This phase corresponds to
lines 1 and 2 in Figure 7. In phase 2, normal blocks are
compacted towards the left of the heap and the forward -
ing tables are set in each block. These forwarding tables
store the offsets between the source and target addresses
of objects, and they are used for the reference fixing oper-
ation in the next phase. This phase corresponds to lines
3, 4, and 5 in the pseudo-code. In phase 3, Packer fixes all
the references from both normal and large objects using
the forwarding tables set in the previous phase. In this
case, if there is a reference pointing to an object that has
already been compacted , it checks the forwarding table in
this block to look for the address offset. Then it subtracts
this offset from the original address stored in the refer-
ence to get the new address of this object. This phase cor-
responds to line 6 of the pseudo-code. In the last phase,
large blocks are compacted and the free blocks are added
to the Free Area Pool. This phase corresponds to line 7, 8,
and 9 in the pseudo-code.

Procedure Packer_Compact_Collection()

Begin

1. parallel_mark_scan_heap();
2. build_virtual_spaces();
3. parallel_move_normal_objects();
4. if(need_move_large_object)
5. compute_large_object_target_address();
6. parallel_fix_object_references();
7. if(need_move_large_object)
8. parallel_move_large_object_block();
9. add_free_area_into_free_area_pool();
End

Large object Normal object block

(a) before GC

(b) mark live objects and build virtual spaces

(c) after GC

Figure 7: garbage collection algorithm in Packer

Packer can optionally choose not to compact large ob-
jects, such that large objects are mark-swept. With this
support, Packer incorporates the advantages of both GC-
MS and GC-MC. For the two extreme cases: 1) if it is
large-object-intensive, Packer can choose to mark-sweep
large objects, as GC-MS does, thus avoiding the object
moving overhead; 2) if there are few large objects in the
application, Packer behaves the same as GC-MC, thus
creating a large contiguous free region while keeping the
object moving overhead low. Note that the major steps,
marking, normal object moving, reference fixing, and
large object moving, which correspond to steps 1, 3, 6,
and 8 in pseudo-code, are fu lly parallelized .

Since all the live objects are identified during the first
marking phase, the compaction algorithm can pack all the
live objects to one end of the heap without any holes u n-

filled . There is no fragmentation issue. Also note that
Packer compacts the normal objects before the large ob-
jects: it squeezes out large contiguous free space after the
normal object compaction and then uses the free space for
large object compaction.

3.4 Further Implications of Packer
Besides the advantages in object allocation and garbage
collection, the Packer design has three further implica-
tions: it facilitates pinned object management, the man-
agement of managed and native data in the same heap,
and the management of d iscrete physical areas. Pinned
object support is required in some ru ntime systems that
use conservative GC. Pinned objects are the objects that
can not be moved or garbage collected . One example of
Pinned objects are the communication ports between the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

managed and unmanaged environments. When a gar-
bage collector scans the heap for live objects, sometimes it
will trace to a location, the content of which (pointer or
value) is unknown. In this situation, conservative ga r-
bage collectors would assume that it stores an address to
an object. However, the collector cannot update this ref-
erence slot because it may be storing a value instead of an
address. Thus, this object is a pinned object because it
cannot be moved. Pinned objects introduce serious prob-
lems for GC designs. Imagine that one is using a compac-
tion algorithm to move all live objects towards one end of
the heap. After compaction is done, one assumes that th e
rest of the heap is empty and can be used for object allo-
cation. However, since pinned objects can not be moved,
they may reside in the free regions of the heap, and later it
may be overwritten by the newly allocated data.

In conventional compacting GC designs, additional
management techniques are u tilized to deal with pinned
objects in the heap. Therefore, the algorithms have to
sacrifice performance when there is a pinned object in the
heap. By introducing the concept of virtual spaces, Pack-
er is able to jump over the block containing pinned objects
when build ing the virtual spaces without any perfor-
mance compromise.

Pinned object is also desirable if there are lots of inte-
ractions between managed code and unmanaged code in
the application. In most Virtual Machines, including JVM
and CLR, the managed and unmanaged environments
often need to communicate with each other and pass data
around. The most common approach to deal with this
problem is to copy data from the managed environment
to the native environment and vice versa [17]. This is
highly inefficient because large amount of data copying
incurs very high time and space overheads. Indeed, this
problem can be solved by either temporarily d isabling
garbage collection or pinning the data passed across the
boundary. With Packer ’s support of pinned object, this
problem can be easily resolved.

Also, in some cases, a process’s address space is seg-
mented by the operating system. For example, the system
may load DLLs to arbitrary address ranges, thus breaking
the heap into multiple chunks. Packer is able to link these
d iscrete chunks to create a virtual heap for the process,
therefore providing an as large as possible managed heap
to the applications, making the heap management effi-
cient. We will explore these extensions of Packer in our
fu ture work.

4 PARALLELIZATION OF GARBAGE COLLECTION
In this section we first demonstrate how we reduce the
compaction parallelization problem into a DAG traversal
parallelization problem. Then we present the implemen-
tation of parallel normal and large object compaction in
Packer, as well as the load balance mechanisms.

4.1 Parallelization of Compacting GC
Compacting GCs move live objects towards one end so as
to eliminate fragmentations. In order to increase GC effi-

ciency, parallel compaction algorithms are essential in
modern GC designs. The fundamental goal of a parallel
compaction algorithm is to exploit as much parallelism as
possible while keeping the synchronization overhead as
low as possible.

movement of normal objects

movement of large objects

Figure 8: normal and large object compaction

As shown in Figure 8, there exist many normal objects
in virtual non-LOS, and the data dependencies between
these normal objects are fairly low, implying a high d e-
gree of parallelism. Note that in this context, dependence
means location dependence, such that object B needs t be
moved to the location where object A occupies, therefore,
object B cannot be moved to object A’s location unless
object A has been moved elsewhere. In this situation, we
say that object B has a dependence on object A.

In order to parallelize the compaction process in a
straightforward manner, an atomic operation, which is
notorious for its inefficiency, is needed for each object
movement. Thus the cost of parallelization may well su r-
pass the performance gain. On the other hand, there exist
strong data dependencies in virtual LOS such that the
source object can not be moved to its target location until
the object originally in the target location h as been moved
out. When there are only few large objects, the parallelism
is seemingly inad equate.

This observation indicates that we need to set a proper
parallelization granularity to reduce the high synchroni-
zation overheads caused by fine-grain data movement (as
in virtual non-LOS) and the false data dependencies
caused by coarse-grain data movement (as in virtual
LOS). Our design is to d ivide the heap into equal-sized
blocks such that the parallelization granularity is a block.
For virtual non-LOS, each block contains multiple objects.
During collection, each thread obtains a block and moves
all the objects in the block. Thus, at most one atomic op-
eration is required for the movement of mult iple objects,
greatly reducing the synchronization overhead. For vir-
tual LOS, each object contains one or more blocks. When
one block of a large object can not be moved due to data
dependency, the other blocks can still be moved, thus re-
ducing the false dependency problem. For instance, in
Figure 9, blocks 7 and 8 belong to one object, and blocks
11 and 12 belong to another. Originally, the blocks of one
large object must be moved together, so blocks 7 and 8
cannot be moved until block 5 has been moved out. With
equal-sized blocks, dependencies only exists between
blocks 7 and 5, so the dependencies between blocks 8 and
5 are false data dependencies. Block 8 can be moved in-
dependently of block 7.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

LIU ET AL.: PACKER: PARALLEL GARBAGE COLLECTION BASED ON VIRTUAL SPACES 7

1 111098765432 12

1 111098765432 12

large objects

normal objects

movement of normal objects

movement of large objects

4 5 7 11

6 8 12

dependency list for large objects
1 4

6

3
9

10

dependency tree for normal objects

Figure 9: block-based heap structure

Further complications exist in parallelizing the com-
paction process. For virtual non-LOS, races between mul-
tiple collectors exist when they move objects from a
source block to a target block. For instance, two collectors
may move data from two source blocks into the same tar-
get block, or one collector may write into a target block in
which the original objects have not been moved away yet.
This observation indicates two properties. First, each
block has two roles, it is a source block when its objects
are compacted to some other block, and it can be a target
block after its original data has been moved away.
Second, in virtual non-LOS, multiple source blocks may
compact into one target block, and thus the access to this
target block should be synchronized.

In order to achieve high performance, the complex re-
lations between the blocks need to be clarified before the
compacting threads start. To achieve this, we generate
dependence DAG, such as the one in Figure 9, which cap-
tures all the data d ependencies between the blocks. For
instance, in virtual LOS, block 5 is the source block for
block 4 and it is also the target block for block 7. Thus,
block 7 cannot be moved to block 5 until block 5 has been
moved to block 4. In virtual non-LOS, block 1 is the tar-
get block for block 3, and block 3 is also the target block
for blocks 6, 9 and 10. Thus, blocks 6, 9, and 10 cannot be
moved to block 3 until block 3 has been moved to block 1.

When compaction starts, the threads traverse the
DAG to obtain a source block and a target block. After
the current data movement is done, the thread moves
down the DAG to obtain a new source block and set the
old source block to be the new target block. This process
finishes after the thread has reached the leaf nodes of the
DAG. We have reduced the compaction parallelization
problem into a DAG traversal parallelization problem.
For virtual LOS compaction, the situation is simpler be-
cause one source block has only one target block, and vice
versa. Therefore, the dependency DAG degenerates into
dependence lists.

4.2 Implementation of Parallel Large Object
Compaction

To demonstrate the effect of the parallel virtual LOS com-

paction algorithm, we implemented the parallel compac-
tion algorithm presented above in the Apache Harmony
GC. Before collection starts, a number of d isjoint depen-
dence lists are generated to capture the dependence rela-
tionship among the large object blocks. The pseudo-code
of the dependency lists generation algorithm is shown in
Figure 10: first, multiple collectors compete to grab the
large objects from the heap; the accesses to the heap are
guarded with atomic operations (Label 1). Second, after
obtaining a task, the collector thread u pdates the glob-
al_target_address to allow other threads to continue (Label
2). At last, the collector computes the dependencies be-
tween the source and target blocks and inserts these
blocks into the dependency lists (Label 3).

global_target_address = heap_start;
for (each collector thread in parallel){
Label1: // grab a large object

large_obj = pick_node_atomically(large_object_list);
obj_size = num_of_blocks (large_obj) * size_of_block;

Label2: //increment global_target_adress
do{
old_target_address = global_target_address;
new_target_address = old_target_address + obj_size;
temp = atomic_compxchg (global_target_address,

new_target_address, old_target_address);
}while(temp != old_target_address);

Label3: // build the dependency list
source_block = address_to_block_index(large_obj);
target_block = address_to_block_index(old_target_address);
for(i = 0; i++; i < num_of_blocks (large_obj)){
insert_a_dependence_to_list(target_block, source_block);
target_block++;
source_block++;

}
} //loop back for next object

Figure 10: dependence list generation

Figure 11 shows the pseudo-code of the parallel com-
paction process: each collector atomically grabs a depen-
dence list and works on it independently. In this case, it
only requires an atomic operation for each d ependency
list instead of for each block. In essence, a thread first
acquires the ownership of a dependency list through an
atomic operation. From the list, it gets the first block,
which is the target block, and the second block, which is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

the source block, and moves the source to the target.
When it finishes this block movement, the source block
now becomes the target block and a new source block is
obtained by taking the next block in the depen dency list.
This operation repeats until there is no more block in the
dependency list. Then, the thread obtains another d e-
pendency list from the task pool.

Procedure Parallel_Large_Object_Compaction()
Begin
1. dep_list = get_next_compact_dep_list();
2. while(dep_list){
3. target_block = get_first_block(dep_list);
4. source_block = get_next_block(dep_list);
5. while(source_block != NULL){
6. memmove(target_block, source_block);
7. target_block = source_block;
8. source_block = get_next_block(dep_list);
9. }
10. dep_list = get_next_compact_dep_list();
 }
End

Figure 11: parallel large object compaction

4.3 Implementation of Parallel Normal Object
Compaction

Packer u tilizes the Move-Compact algorithm from
Apache Harmony JVM for normal object compaction [7].
This algorithm involves three phases for parallel normal
object compaction: live object marking, object moving,
and reference fixing.

Phase 1: Live object marking. It traces the heap from
root set and marks all the live objects;
Phase 2: Object moving. It copies the live objects to
their new locations;
Phase 3: Reference fixing. It ad justs all the reference
values in the live objects to point to the referenced ob-
jects’ new locations.

Although the three phases are fu lly parallel, we only
focus on the parallelization of the moving phase, which is
most related to our prop osed design. In this phase, a col-
lector first atomically grabs a source block in heap ad -
dress order. Then it grabs a target block that has lower
address than the source block. Each block is d ivided into
multiple sectors that each encapsulates a number of live
objects. The sector size is the same size as the page size,
which is usually 4 KB. For each sector of live objects in the
source block, the collector computes its target address in
the target block, moves the sector to its target position,
and stores the address offset to the forwarding table in the
block header. When the target block has not enough
space, the collector grabs the next target block. When the
source block has no more live objects, the collector grabs
another source block in heap add ress order until all the
blocks have been visited . In this phase, two atomic opera-
tions are needed for one block to eliminate data races: one
for taking the ownership of the source block, and the oth-
er for taking the ownership of the target block. Note that
this process can be seen as a parallel DAG traversal
process. When a collector grabs a source block and a tar-
get block in heap address order, it is actually traversing
from the top of the DAG. When it finishes the movement
of data in the cu rrent source block, the source block is
released and can be used as a target block in the next it e-

ration, thus the collector is indeed traversing down the
dependency DAG until all blocks have been compacted .
If multiple collectors try to grab the same target block,
synchronization mechanism is necessary to coord inate
their operations. Note that in this three-phase algorithm,
target address calculation and object movement is done in
the same phase, thus the dependency DAG is generated
dynamically instead of pre-generated .

4.4 Load Balance
The parallel compaction algorithms would achieve high
performance only if the workload for each thread is ba-
lanced. However, load imbalance can occur in dependen-
cy lists and DAG. As shown in Figure 12, if there are two
threads working on compaction, the work load of thread
1 would be much higher than that of thread 2 due to the
existence of a long d ependency list. In this case, thread 2
has to wait until thread 1 finishes its task.

assigned to thread 1

assigned to thread 2

Dependency Lists

Figure 12: load imbalance in depdency lists

To enhance parallelism, we introduce the load bal-
ance algorithms in this section. First, we have imple-
mented a heuristics that counts the total number of d e-
pendency lists and d ivides them into N (number of
threads) chunks and then collapses each chunk into a d e-
pendency list. We call this approach Task Collapse, the
main advantage of this approach is its simplicity. It sim p-
ly counts the nu mber of dependency lists and d ivide the
dependency lists equally among all collector threads.
Thus, it does not have to traverse all dependence lists to
count the number of blocks. However, the d isadvantage
of this design is that if the dependency lists are highly
imbalanced, Task Collapse may not perform well because it
may collapse several long lists into one list and several
short lists into another.

In cases where the dependency lists are highly imba-
lanced. We can use a more sophisticated Task Pushing load
balance approach [13]. For instance, when a dependency
list gets too long or when there are always one or two
disjoint sub-DAGs generated after the root block is filled ,
the work load between threads would be imbalanced.
Our Task Pushing design can solve this problem by using
virtual target blocks. To break long lists, we can use a
virtual target block for one of the blocks in the middle of
the list, and thus this virtual target block breaks the long
list into two halves. The virtual target block also serves as
the new root of the newly created dependency list. To
implement this virtual target block, we move the source
block to a reserved region (the virtual block) such that the
source block no longer depends on another block and

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

LIU ET AL.: PACKER: PARALLEL GARBAGE COLLECTION BASED ON VIRTUAL SPACES 9

becomes a root block. Then after compaction finishes,
this block in the reserved region (the virtual block) can be
thrashed. For more details of the design and implementa-
tion of Task Pushing, please refer to [13].

For instance, in Figure 12, the third depen dency list is
too long. Using Task Pushing, we can break the third d e-
pendency list into two halves, such that we move the
third block to a reserved region rsv and make rsv depend
on the second block, so rsv becomes the tail of third d e-
pendency list. Next, since now we have two copies of the
third block, the third block no long depends on the
second block, thus we create a new dependency chain to
hold the third block and whatever comes after it.

This algorithm can be applied to dependency DAG as
well, but instead of breaking a long d ependency list, we
break a dependency DAG into sub-DAGs and assign each
sub-DAG to a thread . The pseudo-code is shown in Fig-
ure13, where Wi is the local working set of collector Ci.
This algorithm applies the idea of Task Pushing, such that
a collector pushes its excessive tasks to other id le collec-
tors (line 17). When all the collectors have no more tasks,
the execution finishes. Otherwise, the collectors will loop
back to check if other collectors have pushed new tasks to
their local working sets.

1. while(working set Wi is not empty){
2. Noderoot = get_node_from_set(Wi);3. foreach (Nodechild Noderoot's children) {4. move_data(Noderoot, Nodechild);5. decrement num_of_parents of Nodechild;6. if (num_of_parents of Nodechild == 0)7. put_node_to_set(Wi, Noderoot)8. }
9. remove Noderoot from the tree;10. if(Wi is empty) break;11. foreach (collector Ck other collectors){12. if (collector Ck has no task){13. if (Wi has only one tree){14. break it into subtrees;
15. }
16. Noderoot = get_node_from_set(Wi);17. put_node_to_working_set(Wk, Noderoot);18. }
19. }
20. }
21. if (all collectors come to here) // barrier
22. exit;
23. else goto step 1

Figure 13: load balance algorithm for parallel compaction

5 EXPERIMENTS AND RESULTS
In this section, we present our experiment results for ou r
Packer algorithm. All proposed algorithms have been
implemented in Apache Harmony, a product-quality
open source JAVA Virtual Machine [10]. The heap is d i-
vided into equal-sized blocks, and each block contains a
block header for its metadata, including block base ad -
dress, block ceiling address, block state, etc. Block size is
adjustable, but the block header size is a constant and
independent of the block size. For this study, the block
size is set to 32 KB and the size threshold for large objects
is set to 16 KB. The evaluation of Packer is done with the
SPECjbb2005 [11] and Dacapo [12] benchmark suites.
SPECjbb2005 is a large server benchmark that em ploys
several program threads; it is representative of commer-

cial server-side applications. On the other hand, Dacapo
is a su ite of client-side Java applications. For all experi-
ments, we use a 256 MB heap by default.

In these experiments, we compare th ree GC designs:
GC-MC, GC-MS, and Packer. GC-MC is the default GC
algorithm in Apache Harmony and it u tilizes the Move-
Compact algorithm for garbage collection. It d ivides the
heap into separate spaces: Large Object Space (LOS) and
non-LOS, to manage large and normal objects. However,
this algorithm can not be parallelized for the compaction
of large objects. For GC-MC, with a heap size of 256M,
we experimented with four configurations: GC-MC with
50M LOS (GC-MC 50M), GC-MC with 100M LOS (GC-
MC 100M), GC-MC with 150M LOS (GC-MC 150M), and
GC-MC with 200M LOS (GC-MC 200M). GC-MS uses
Mark-Sweep for the garbage collection of the whole heap.
Packer manages virtual LOS and virtual non -LOS in the
same heap, and enables the parallelization of both normal
and large object compactions.

5.1 Comparison of Space Utilization
In real applications, the object size d istribution varies
from one application to another and from one execution
phase to next even in one application. For instance,
SPECjbb2005 is a non-large-object-intensive benchmark
that allocates a very small number of large objects, thus it
requires a large non-LOS. On the other hand, xalan, jy-
thon, and bloat from the Dacapo benchmark suite are
large-object-intensive thus requiring a large LOS. In add i-
tion, SPECjbb2005 allocates all the large objects at the be-
ginning of its execution and very few large objects after-
wards. Thus in d ifferent phases of its execution, it re-
quires d ifferent sizes for LOS.

Figure 14 shows the space u tilization of d ifferen t de-
signs. Note that in this paper we define space u tilization
as the percentage of heap space usage when GC occurs.
For example, if the heap size is 512 MB, and at the time
when GC occurs, 500 MB of the heap space is u sed and 12
MB of the heap space is free, then the space u tilization is
97.7%. The results show that Packer guarantees the heap
space is fu lly u tilized because collection is triggered only
when there is no free region in the Free Area Pool. The
average space u tilization of GC-MS is 81%. For lusearch,
the space u tilization is only 49%, which is caused by
heavy fragmentation. The average space u tilization ratios
are 78%, 69%, 49%, and 26% for GC-MC 50M, GC-MC
100M, GC-MC 150M, and GC-MC 200M respectively.
Usually, most objects are normal objects. Hence when
LOS gets too big, there is insufficient space for normal
object allocation, causing frequent garbage collections and
low space u tilization. Nonetheless, for xalan, GC-MC
space u tilization is maximized when LOS size is 100M.
This is because xalan is a large-object-intensive applica-
tion, which contains a large number of large objects when
garbage collection happens. In general, space u tilization
is worse when the heap is statically partitioned into mu l-
tiple spaces. Static partition fails to meet the needs of
large object and non-large object space u tilization, pre-
cisely because this is a dynamic behavior. On the other
hand, although GC-MS does not suffer from this problem,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

it creates a heavy fragmentation problem, often leading to
low space u tilization. By managing multiple virtual spac-
es in one physical space, Packer overcomes all these prob-
lems.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

bl
oa

t

ch
ar

t

ec
lip

se

hs
ql

db

jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

sp
ec

jb
b

xa
la

n

av
g

sp
ac

e
ut

ili
za

tio
n GC-MC 50M

GC-MC 100M
GC-MC 150M
GC-MC 200M
GC-MS
Packer

Figure 14: space utilization of GC-MC, GC-MS, and Packer

5.2 Sequential Performance
Table 1 shows the single-thread performance of Packer,

GC-MS, and GC-MC, including the number of garbage
collection events triggered throughout execution (left col-
umn) and the total GC pause time (right column). The
first observation is that Packer always triggers fewer gar-
bage collections compared to other designs. This is be-
cause Packer guarantees that the heap is fu lly u tilized .
The second observation is that some applications fail to
finish execution, as those d enoted “F” in the table. For
SPECjbb and hsqldb, some GC-MC configurations with
large LOS size fail to complete because they do not have
sufficient space for normal object allocation. In addition,
for hsqldb, GC-MS fails to complete because of heavy
fragmentation. This happens when it can not find su ita-
ble free region in the heap for the newly allocated object.
The third observation is that GC-MS usually has lower
pause time than both Packer and GC-MC. One extreme
case is pmd, in which GC-MS’s pause time is only 1/ 11 of
that of Packer. This is because Mark-Sweep does not in-
volve any object movement, which may incur a high per-
formance overhead.

TABLE 1: GC PAUSE TIME COMPARISON OF PACKER, GC-MS, AND GC-MC

Packer GC-MS GC-MC 50M GC-MC 100M GC-MC 150M GC-MC 200M
bloat 126 1236 133 206 189 1557 236 1573 355 1780 756 2568
chart 51 601 52 69 59 605 78 642 117 700 234 883

eclipse 199 1863 206 1602 291 2427 225 2048 338 2670 845 5474
hsqldb 32 1410 F F 44 2085 125 5975 F F F F
Jython 190 1109 266 436 232 1259 303 1396 455 1686 918 2573
luindex 11 87 13 10 14 90 18 97 27 105 53 127
lusearch 84 3389 175 3465 100 3707 134 4323 203 5553 416 9331

pmd 74 982 74 87 83 1002 100 1036 148 1135 290 1392
SPECjbb 39 1204 41 1160 119 3927 F F F F F F

xalan 324 1578 285 616 700 233 283 1506 329 1605 707 2349

5.3 Scalability of Packer
To demonstrate the effect of Packer ’s parallel compac-

tion algorithms, we compare the scalability of Packer and
GC-MS with 1, 2, 3, and 4 threads. As shown in Figures 15
and 16, the Y-axis of these figures represents the norm a-
lized total GC pause time. Figure 15 shows Packer ’s
scalability. In general, Packer demonstrates very good
scalability. On average, the speedups of Packer are 1.92x,
2.64x, and 3.15x respectively with 2, 3, 4 collectors. 0

0.2

0.4

0.6

0.8

1

1.2

blo
at

ch
art

jyt
ho

n

lus
ea

rch

lui
nd

ex
xa

lan

sp
ec

jbb

No
rm

al
iz

ed
 G

C
Pa

us
e

Ti
m

e

1 thread
2 threads
3 threads
4 threads

Figure 15: Packer scalability

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

LIU ET AL.: PACKER: PARALLEL GARBAGE COLLECTION BASED ON VIRTUAL SPACES 11

0

0.2

0.4

0.6

0.8

1

1.2

blo
at

ch
art

jyt
ho

n

lus
ea

rch

lui
nd

ex
xa

lan

sp
ec

jbb

No
rm

al
iz

ed
 G

C
Pa

us
e

Ti
m

e

1 thread
2 threads
3 threads
4 threads

Figure 16: mark-sweep scalability

Figure 16 shows GC-MS’s scalability. Compared to
Packer, GC-MS’s scalability is lower. On average, the
speedups of GC-MS are 1.5x, 1.72x, and 1.64x respectively
with 2, 3, 4 collectors. Note that the average speedup for
the 4-thread case is actually lower than that of the 3-
thread case. This is because for some benchmarks, such
as lusearch and lu index, the 4-thread case introduces long
pause time. This is particularly true for lusearch, where
the pause time for the 4-thread case is much higher than
the sequential case due to the heavy fragmentation in
these applications. When fragmentation is serious, gar-
bage collections become much more frequent and the
elapsed time between two garbage collections is very
short. Hence, only a small number of objects are allocated
and collected in each allocation-collection period . Under
this situation, synchronization overhead becomes the m a-
jor component of the GC pause time, negatively impact-
ing GC performance. For other applications with low
degree of fragmentation, such as xalan and SPECjbb, the
speedups are comparable to those of Packer.

Figure 17: comparison of parallel Packer and GC-MS

Table 1 indicates that in the sequential case, Mark-
Sweep is more efficient than compaction algorithms be-
cause it does not involve the movement of objects. Nev-
ertheless, as the number of threads increases, Packer
gradually takes the performance advantage over GC-MS
due to better scalability. As an illustration, in Figure 17
we compare the performance of parallel GC-MS and
Packer on jython. It clearly shows that although GC-MS’s
GC pause time is only 1/ 3 of that of Packer in the sequen-
tial case, these two nu mbers converge as the number of
threads increase.

5.4 Impacts on Overall Performance
This section presents how Packer impacts the perfor-
mance of the overall program execution. To collect this
data, we run the respective benchmarks on an Intel 8-core
Tulsa platform and compare the performance of Packer,
GC-MC, and GC-MS. For GC-MC, we manually opti-
mized the LOS size to maximize space and time efficiency
for each application. Figure 18 shows the results on
SPECjbb. The X-axis shows the number of warehouses
used in execution and the Y-axis shows the normalized
SPECjbb score, a higher score represents higher perfor-
mance. To generate these results, we repeated the exp e-
riments for ten times and presented the average results.
Packer ’s performance is consistently 1.2% higher than
that of GC-MS. Although this seems to be a very small
performance gain, but considering that garbage collection
only takes about 10% of the total execution time, this
would translate into 12% GC performance improvement,
which is a significant amount. Also, Packer ’s perfor-
mance is higher than that of GC-MC, but the advantage is
not obvious. This is because both GC-MC and Packer u til-
ize the same algorithm for normal object compaction and
SPECjbb2005 is not a large-object-intensive benchmark.

Figure 18: impacts on SPECjbb 2005 overall performance

0

50000

100000

150000

200000

250000

300000

jython bloat

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Packer
GC-MC
GC-MS

Figure 19: impacts on Dacapo overall performance

Figure 19 presents the results with the Dacapo bench-
mark suite. Compared to SPECjbb, jython and bloat are
large-object-intensive. Packer ’s performance is 3% higher
than that of GC-MS and 8% higher than that of GC-MC.
Note that in GC-MC, large object compaction is not paral-
lelized . Thus in sequential case, the Mark-Sweep algo-
rithm has better performance than compaction in large
object garbage collection. Nevertheless, with the parallel
large object compaction algorithm proposed in this paper,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

compaction can be more efficient.

5.5 Load Balance
In our study on LOS load balance with xalan, we found
that the max length of a dependency list was 48, while the
majority (78%) of dependency lists contained only one
moving task (only one source block and one target block).
This result has two implications: First, without optimiza-
tion, the dependency lists may be imbalanced such that
there were several long lists and a large amount of short
lists, and the long lists became the performance bottle-
neck since they could only be executed sequentially.
Second, it required an atomic operation to fetch a depen-
dency list, when the list contained only one block, then
the performance gain could be very low. Actually, we
found out that this overhead was 38%, that is, if the task
takes 100 cycles to move a block, then the synchronization
overhead to fetch this task is 38 cycles on average.

In another study on non-LOS load balance with
SPECjbb2005 benchmark, we found out that the maxi-
mum depth of a dependence DAG was 353 while the av-
erage depth was only 22.3. Also, the maximum number of
child nodes for each node was 20 while the average was
1.5. This implies the possibility of the existence of some
huge DAG that contained a large number of nodes, along
with some small DAGs that contained only few nodes.

To address these problems, in Section 4.4 we have in-
troduced two load balance algorithms Task Collapse and
Task Pushing. In our experiments, we found that Task Col-
lapse is sufficient for most benchmark programs. Since
Task Pushing needs to go through all dependency lists, it
introduces a fairly high overhead. It would bring per-
formance gain only when its overhead can be significan t-
ly amortized . Therefore, Task Pushing is su itable for large
server applications that require a large heap size (~10
GB).

6 CONCLUSIONS AND FUTURE WORK
Space and time efficiency are the two most important d e-
sign goals in GC design. However, many garbage collec-
tion algorithms trade space u tilization for performance
and vice versa. In this paper, we proposed Packer, a nov-
el garbage collection algorithm that manages multiple
virtual spaces in one physical space, thereby guaranteeing
the space is fu lly u tilized while avoiding the fragmenta-
tion problems. To improve performance, we first reduced
the heap compaction parallelization problem into a paral-
lel DAG traversal problem, and then designed solu tions
to eliminate false sharing and to reduce the syn chroniza-
tion overhead . It is noteworthy that Packer is generic
enough to be used in any situation that involves the man-
agement and coordination of multiple virtual spaces in
one physical space and vice versa.

The experiment results show that Packer has much bet-
ter space u tilization than GC-MC and GC-MS. Also, the
parallel compaction algorithms in Packer d emonstrate
great scalability. Although GC-MS has lower GC pause
time than Packer in the sequential case, as the number of
threads increases, Packer gradually takes the performance

advantage over GC-MS due to better scalability. In add i-
tion, we evaluate Packer ’s impact on the overall perfor-
mance. Note that although GC only takes about 10% of
the total execution time in the application programs,
Packer is able to achieve 1.2% and 3% performance gain
over GC-MS in the SPECjbb and Dacapo benchmark
suites, which translates into about 12% and 30% reduction
of GC times, respectively. Hence, our results demonstrate
that Packer is highly space-and-time efficient.

Our ongoing work is three-fold : first, we plan to apply
Packer in more GC designs. Specifically, w e intend to im-
plement a generational Packer, which consists of a physi-
cal Nursery Object Space (NOS), a virtual Large Object
Space (LOS), and a virtual Mature Object Space (MOS).
In minor collection, live normal objects are copied from
NOS to virtual MOS, and virtual LOS can be marked and
swept. Then in major collection, the fu ll heap is com-
pacted . In the next step, we would attempt to manage
virtual NOS, virtual MOS, and virtual LOS in one physi-
cal space, thereby achieving a generational GC with fu lly
virtualized space management.

Second, we plan to test the proposed parallel compac-
tion algorithms on high-end commercial servers that con-
sist of tens of cores and >10 GB of memory. A key chal-
lenge in this new setting is to maintain the scalability of
these algorithms, thus one essential component is the load
balance algorithm, such as Task Pushing.

Finally, as d iscussed in subsection 3.4, the Packer con-
cept can be applied to pinned object management, the
management of managed and native data in the same
heap, and the management of d iscrete physical areas. We
aim to apply the virtual spaces design in these areas.

ACKNOWLEDGEMENTS
This work is partly supported by the National Science
Foundation under Grant No. CCF-1065448. Any opi-
nions, findings, and conclu sions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES
[1] P.J. Caudill, A. Wirfs-Brock. A Third Generation Smalltalk-80 Imple-

mentation. Conference proceedings on Object-oriented programming
systems, languages and applications, Portland, Oregon, USA, 1986

[2] M. Hicks, L. Hornof, J.T. Moore, S.M. Nettles. A Study of Large Ob-
ject Spaces. In Proceedings of ISMM 1998

[3] S. Soman, C. Krintz, D.F. Bacon. Dynamic selection of application-
specific garbage collectors. In Proceedings of ISMM 2004.

[4] D. Barrett and B.G. Zorn. Garbage Collection using a Dynamic
Threatening Boundary. In Proceedings of PLDI 1995.

[5] R.E. Jones. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. Wiley, Chichester, July 1996. With a chapter
on Distributed Garbage Collection by R. Lins.

[6] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel garbage collec-
tion for shared memory multiprocessors. In the USENIX JVM Sym-
posium, 2001

[7] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An efficient
parallel heap compaction algorithm. In the ACM Conference on Ob-
ject-Oriented Systems, Languages and Applications, 2004.

[8] H. Kermany and E. Petrank. The Compressor: Concurrent, incremen-
tal and parallel compaction. In PLDI, 2006.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

LIU ET AL.: PACKER: PARALLEL GARBAGE COLLECTION BASED ON VIRTUAL SPACES 13

[9] M. Wegiel, C. Krintz, The Mapping Collector: Virtual Memory Sup-
port for Generational, Parallel, and Concurrent Compaction, In AS-
PLOS '08, Seattle, WA, March 2008.

[10] Apache Harmony: Open-Source Java SE.
http:/ / harmony.apache.org/

[11] Spec: The Standard Performance Evaluation Corporation.
http:/ / www.spec.org/ .

[12] Dacapo Project: The DaCapo Benchmark Suite. http:/ / www-
ali.cs.umass.edu/ dacapo/ index.html

[13] Ming Wu and Xiao-Feng Li, Task-pushing: a Scalable Parallel GC
Marking Algorithm without Synchronization Operations. IEEE
IPDPS2007.

[14] T. Endo, K. Taura, and A. Yonezawa. A scalable m ark-sweep
garbage collector on large-scale shared -memory machines Pro-
ceedings of High Performance Networking and Computing (SC97),
1997.

[15] P. Cheng G.E. Blelloch, A Parallel, Real Time Garbage Collec-
tor, ACM SIGPLAN Notices, Volume 36, 2001.

[16] R.H. Halstead . Multilisp: A language for concurrent symbolic
computation. ACM Transactions on Programming Languages
and Systems, 1985.

[17] The Mono Project. www.mono-project.com
[18] W. Appel, Simple generational garbage collection and fast allo-

cation. Software. Practice & Experience. 19, 1989
[19] R.R. Fenichel, J.C. Yochelson, A Lisp Garbage- Collector for

Virtual-Memory Computer Systems, Communications of the
ACM, 1969, 12(11), pp. 611–612.

[20] H.G. Baker. List processing in real-time on a serial computer.
Communications of the ACM , 21(4):280–94, 1978. Also AI Labora-
tory Working Paper 139, 1977.

[21] R.A. Brooks. Trad ing data space for reduced time and code
space in real-time garbage collection on stock hardware. In Pro-
ceedings of Conference Record of the 1984 ACM Symposium on Lisp
and Functional Programming, pages 256–262, Austin, TX, August
1984.ACM Press.

[22] R.L. Hudson and J.E.B. Moss. Incremental garbage collection
for mature objects. In Proceedings of International Workshop on
Memory Management, volume 637 of Lecture Notes in Computer
Science, University of Massachusetts, USA, 16–18 September
1992. Springer-Verlag.

[23] H.J Boehm, A.J. Demers, S. Shenker, Mostly Parallel Garbage
Collection, ACM SIGPLAN Notices, 1991.

[24] A. Appel, J.R. Ellis, and K. Li, ‘‘Real-time Concurrent Collection
on Stock Multiprocessors’’, Proceedings of the SIGPLAN ’88 Con-
ference on Programming Language Design and Implementation,
SIGPLAN Notices 23, 7 (July 88), pp. 11-20.

[25] Demers. A., M. Weiser, B. Hayes, H. Boehm, D. Bobrow, S.
Shenker, ‘‘Combining Generational and Conservative Garbage
Collection: Framework and Implementations’’, Proceedings of the
Seventeenth Annual ACM Symposium on Principles of Program-
ming Languages, January 1990, pp. 261-269.

[26] J. DeTreville, ‘‘Experience with Concurrent Garbage Collectors
for Modula-2+’’, Digital Equipment Corporation, Systems Re-
search Center, Report No. 64.

[27] R.H. Halstead. Implementation of Multilisp: Lisp on a multi-
processor. In 1984 ACM Symposium on LISP and Functional Pro-
gramming, 1984. ACM.

[28] B. Steensgaard . Thread -specific heaps for multi-threaded pro-
grams. ACM SIGPLAN Notices, January 2001

[29] C. J. Cheney. A non-recursive list compacting algorithm. Com-
munications of the ACM,13(11):677 8, November 1970

Shaoshan Liu is currently with Microsoft. He received Ph.D. in
Computer Engineering, M.S. in Biomedial Engineering, M.S. in

Computer Engineering, and B.S. in Computer
Engineering, respectively in 2010, 2007,
2006, and 2005 respectively, all from the
University of California, Irvine. His research
interests include parallel computer architec-
tures, embedded systems, runtime systems,
as well as biomedical engineering.

Jie Tang is a Ph.D. candidate in Beijing Insti-
tute of Technology, China. Her research interests include high per-

formance computer architecture, cloud compu-
ting, and embedded system. Jie’s Ph.D. thesis
title is “Performance Acceleration and Energy
Efficiency Mechanisms in Cloud Computing
Environment”, in which she studies the impact of
hardware acceleration and prefetching tech-
niques in enhancing both the performance and
energy efficiency for cloud computing environ-
ment. During her Ph.D. study, Jie also worked
as a visiting researcher in the Center for Em-
bedded Computer Systems, University of Cali-

fornia, Irvine. Jie holds a B.S. in Computer Science from National
University of Defense Technology, China.

Ligang Wang is currently an R&D engineer at
the Managed Runtime Technologies Center of
Intel China Research Center. His research
interests focus on Garbage Collection (GC),
Java Virtual Machine (JVM), and other runtime
technologies. Ligang has developed important
algorithms for the garbage collector module of
Apache Harmony. Ligang graduated from Uni-
versity of Science and Technology of China
with Ph.D degree at 2006. His dissertation was

on real time scheduling and operating system design.

Xiao-Feng Li’s research interests are with programming systems
and language design. Currently Xiao-Feng is the manager of China

Runtime Technologies Lab in Intel China Re-
search Center. His team works on runtimes
including Java Virtual Machine, scripting en-
gines, browser technologies and their impacts
on computer architecture. Before joining Intel,
Xiao-Feng worked with Nokia Research Cen-
ter. Xiao-Feng has a Ph.D degree in computer
science.

Jean-Luc Gaudiot received the Diplôme
d’Ingénieur from the École Supérieure
d’Ingénieurs en Elec- trotechnique et Electro-
nique, Paris, France in 1976 and the MS and
PhD degrees in Computer Science from
the University of California, Los Angeles
in 1977 and 1982, respectively. He is cur-
rently a Professor of the Electrical and Com-
puter Engineering Department at the Uni-
versity of California, Irvine. Prior to joining
UCI in January 2002, he was a Professor of
Electrical Engineering at the University of Southern California since
1982, where he served as and Director of the Computer Engineering
Division for three years. He has also done microprocessor systems
design at Teledyne Controls, Santa Monica, California (1979–1980)
and research in innovative architectures at the TRW Technology
Research Center, El Segundo, California (1980–1982). He consults
for a number of companies involved in the design of high-
performance computer architectures. His research interests include
multithreaded architectures, fault-tolerant multiprocessors, and im-
plementation of reconfigurable architectures. He has published over
170 journal and conference papers. His research has been spon-
sored by NSF, DoE, and DARPA, as well as a number of industrial

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

organizations. In January 2006, he became the first Editor-in-Chief of
IEEE Computer Architecture Letters, a new publication of the IEEE
Computer Society, which he helped found to the end of facilitating
short, fast turnaround of fundamental ideas in the Computer Archi-
tecture domain. From 1999 to 2002, he was the Editor-in-Chief of the
IEEE Transactions on Computers. In June 2001, he was elected
chair of the IEEE Technical Committee on Computer Architecture,
and re-elected in June 2003 for a second two-year term.He is a
member of the ACM, of the ACM SIGARCH, and of the IEEE. He
has also chaired the IFIP Working Group 10.3 (Concurrent Sys-
tems). He is one of three founders of PACT, the ACM/IEEE/IFIP
Conference on Parallel Architectures and Compilation Techniques,
and served as its first Program Chair in 1993, and again in 1995. He
has also served as Program Chair of the 1993 Symposium on Paral-
lel and Distributed Processing, HPCA-5 (1999 High Performance
Computer Architecture), the 16th Symposium on Computer Architec-
ture and High Performance Computing (Foz do Iguaçu, Brazil), the
2004 ACM International Conference on Computing Frontiers, and
the 2005 International Parallel and Distributed Processing Sympo-
sium.In 1999, he became a Fellow of the IEEE. He was elevated to
the rank of AAAS Fellow in 2007.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

