
NEOP: A Framework for Distributed Mobile Apps
on Heterogeneous Devices

Yiwei Zhao
OPPO Research USA
Palo Alto, CA, USA

yiwei@oppo.com

Song Jiang
University of Texas at Arlington

Arlington TX, USA

song.jiang@uta.edu

Weidong Zhong
OPPO Neutron Lab

Chengdu, China

zhongweidon@oppo.com

Lizhong Wang
OPPO Neutron Lab
Chengdu, China

wlz@oppo.com

Xiao-Feng Li
OPPO Research USA
Palo Alto, CA, USA

xiao-feng.li@oppo.com

Abstract—Today’s apps on a mobile device, such as a smart-
phone and a tablet, need to access various resources to deliver
quality service to users’ satisfaction. These resources may include
cameras, microphones, screens, processors, various specialized
sensors, and data. In today’s client-server framework, resources
accessible to an app are limited to those available in the device
running the app, on the cloud, and likely in a few statically
connected devices. However, there can be abundant resources on
devices near the app-running one with desirable functionalities
that can enable or empower the app’s new features and services,
but cannot be easily accessed and leveraged.

The NEOP (Neutron Operation Platform) framework is an
app development and execution environment that removes the
barrier across the devices. Heterogeneous IoT devices make the
capabilities in their hardware and service software available
after security and privacy authentication. An app is developed
as a composition of capabilities distributed across various end
devices and the cloud. Its constituent computing tasks can be
dynamically created and scheduled. Different device capabilities
can be selectively and dynamically recruited into the app for the
optimal user experience.

In this paper we describe example scenarios that motivate the
next-generation app framework, the framework’s architecture,
design principles, technical challenges, and details on its design
and implementation. We also compare this work with related
efforts on distributed mobile computing to highlight the unique
contributions made by the NEOP platform.

Index Terms—Android ecosystem, app development

I. INTRODUCTION

Nowadays, people’s lives have been tightly connected to

smart mobile devices, such as smart phones and tablets. It

would be a huge challenge, if not unlikely, for a person to

live conveniently and productively without accesses to apps on

the devices. This is especially the case when an app leverages

functionalities available on increasingly diverse devices, such

as smart watches, smart locks, and smart speakers. Tradition-

ally, an app is designed mostly with capabilities on the hosting

device (e.g., display, camera, speaker, microphone, fingerprint

reader, and gyroscope sensor on a smartphone) and those in

the cloud (e.g., processor and storage on servers at a data

center) in mind. When more and more external smart IoT

devices with various appealing capabilities (e.g., smart TVs,

smart locks, smart speakers, gaming headsets, and surveillance

cameras) become available and pervasive in our surroundings,

app developers and users alike welcome the opportunity to

extend the app’s reach beyond its host device.

While people are well aware of the demand on such an

extension, and efforts have been continuously made to meet

the demand, current solutions are inadequate for a number

of reasons. First, connections between devices are manu-

ally established and statically maintained. Examples include

Bluetooth-connected speakers, Miracast-connected TVs [1],

and cloud-assisted connection to surveillance cameras. While

these individual technologies can make external devices acces-

sible, they are point solutions that apps have to be customized

to at their design phase. They allow connections to only

limited compatible devices by design, and do not support

access of devices with dynamic selection and connection for

optimal user experience. Second, an app (or an Android system

service) comprises a number functionalities. The binder IPC

mechanism is employed to enable sharing of functionalities

within a device [2]. Though cross-device sharing is possible

for reaching functionalities on other devices, there is not any

infrastructure-level support that can systematically facilitate

advertisement, search, and recruitment of functionalities across

the end devices. Because there exist rich, diverse, and some-

times unique functionalities across the devices that might be on

the move, it is a challenge to dynamically compose a service

or an app with distributed functionalities as building blocks.

Third, a critical resource for sharing among devices is the

data generated on-site at the IoT devices. Current practice

usually allows sharing of the data within one device and

between client-side and server-resident components. Function-

alities on the devices in a collaborative environment often

assume accessibility of data in the peer devices. Due to limited

upload/download bandwidths and data-privacy concern, it is

desired to have an cross-device self-managed data storage and

sharing system to support running of distributed apps on the

devices.

Instead of adopting point solutions addressing issues raised

in individual apps or specific use scenarios, NEOP (Neu-

tron Operation Platform), which was proposed and is be-

ing developed by OPPO, provides an app development and

execution platform that fundamentally removes the barriers

between functionalities on different devices. A NEOP app is

a composable entity consisting of functionalities distributed

over multiple devices from its creation, instead of being

an extension of a one-device-hosted app to reach manually

designated external devices. This is made possible in NEOP by

1

a number of its newly introduced key technologies, including

remotization device capabilities1, intelligent interconnection

scheme, across-device distributed file and database systems,

and dynamic task scheduling. NEOP is developed as an

enhancement of the Android ecosystem and is backward

compatible with Android apps.

There are many use scenarios in our everyday lives where

a natively distributed app can provide very different and

appealing use experiences. (1) A user opens an email app

on his smartphone and then two PDF files attached to an

email. The phone’s screen appears to be too small when

the user needs to simultaneously read and compare contents

in the documents and accordingly compose a reply email.

Meanwhile, there are a number of devices nearby with large

displays, such as a smart TV, a laptop computer, and a tablet.

As the external displays have been detected and connected

with the host smartphone, the user may choose to move

one document viewer to the TV display and another to

the PC screen, while dedicating his phone screen to editing

reply email. For an app in the distributed environment, the

displays, regardless whether they are local or remote, are

readily available for the app to selectively show its contents.

Similarly, with this framework support it is straightforward

to construct a multi-head display for a big screen experience.

This experience is in sharp contrast to simply projecting an

entire phone screen to an external display. (2) A user has

multiple devices, each for one of his required functionalities,

such as multiple surveillance cameras for taking photos, and

multiple microphones and speakers on the smarter speakers

for receiving voice commands and playing sound. Instead of

relying on specialized gaming equipment and customer lock-

in, his sports or immersive video game apps can coordinate

the devices to work cooperatively and achieve a synergistic

effect, such as the 3D sound and 3D image effect, taking 360-

degree photos and videos, monitoring players’ heart rates and

gestures from their smart watches, adjusting smart lights for

special effects, and leveraging computing power distributed in

desktop and laptop computers. Composition of a distributed

game app, instead of writing an traditional game app, provides

an app developer with almost unbounded access of ever-

growing capabilities of stationary and mobile devices for ever-

richer play experience. (3) Due to his privacy concern, a

user would like to leave his data produced by his in-house

devices, such as video cameras, sensors, personal medical

devices, and smart home appliances, at home. Some of the data

may have been transferred into a home NAS and some still

stay in the data-collection devices. The user may use an app

to study the correlation of indoor/outdoor temperatures and

humidity to his heart rate and blood pressure by synthesizing

the data distributed in various devices. Without contacting

individual devices and searching for its required data, the app

relies on a distributed database, which is part of the NEOP

framework’s data service, to conveniently obtain the data.

1The remotization refers to techniques making a device’s capabilities or
services available to a remote computing device with standardized interfaces.

This data service will be available regardless of availability

of cloud-side service.

II. THE DESIGN

NEOP aims to provide a development and execution envi-

ronment for natively distributed apps across end devices. On

the one hand, it represents a conceptually disruptive technol-

ogy to optimize development and user experience of mobile

apps. On the other hand, it intends to minimize disruptions

to both developers and users for them to easily adapt to this

ecosystem.

A. Design Objectives and Principles

There are a number of objectives and principles in the

design of the NEOP platform. First, a distributed app is

composed of (likely dynamically) recruited services from

various end devices and the cloud. Unlike motivation of

traditional distributed computing for higher performance via

resource sharing, NEOP’s distributed apps are to optimize user

experience via dynamic selection of services distributed in

devices around a user. That is, a NEOP’s design objective is

to enable people-centered app development ecosystem where

all resources should be leveraged for best user experience,

including the scenarios where the people are on the move and

their surrounding or available resources are changing. Second,

the NEOP platform should provide a service market where a

device can publish its capabilities as services for any other

devices to search for and request on demand. A user’s app

can be aware of nearby available services, and coordinate

their uses with other possible competing apps with the help of

the platform. Third, as Android is the dominant open source

system, the NEOP platform should be compatible to Android

in its app development environment. While Android has

extensive mechanisms and protocols for across-process/app

communications (e.g., Binder [2]), requesting services (e.g.,

Intent [3]), sharing data (e.g., Content Provider [4]), and

synchronizing events/actions (e.g., Broadcast Receiver [5]),

NEOP should retain their API and seamlessly extend them to

the cross-device environment with little disruptions to existing

Android developers.

B. The Challenges

As a project to revolutionize today’s mobile app ecosystem

with a platform supporting development and use of naturally

distributed apps, NEOP faces a number of challenges in its

design and implementation. Being a project directly impacting

its potential end users and developers, its ultimate challenge

is on seamless and effortless adoption and acceptance into

today’s dominant mobile environments.

Specifically, most of the challenges are from minimiza-

tion of disruption to the open-source Android system. (1)

Device remotization into standardized services accessible to

other remote devices. Devices are highly heterogeneous. They

provide a plethora of functions on the hardware from differ-

ent vendors using non-standard interfaces. An extensive and

comprehensive suite of services and their interfaces need to

be decided so that apps on a host device can access them

2

Pub/Sub
Req/Rep

AV Streaming

Global User Resource
Mngmt

Selection of
Device Service

Service
Gateway

Frind-end Inst.

Back-end Inst.

Device 2

Global
Service

Governance

Multi-access-Mode Support Serv. Composition

AMS PMS

Binder Parcel

Android Framework

HAL

Device 1 an Android System

Service
Gateway

Distr.
Security

Framework

Linux

Hypervisor with Safety and Security

Service Gateway

App/Service Store

Apps Inst. Apps Serv.
Composition

Service Certification

Service Deployment

Third-party Service Plugin

NotificationsFront-end
Instance

Intent-BC-PublishersWidgets

Activities

H5

Activities

Content Providers

Intent-BC-Receiver

ServicesBack-end
Instance

Micro-service

Interconnect Channel

Breeno

Instant App Framework

Inst. App
Global User Resource

Mngmt

Selection of Device
Service

Global Service
Governance

Dynamic Service Mngmt

Global Service
Governance

Dynamic Service
Mngmt

Breeno
Breeno

Develop
Submit/Deploy

Serv. Composition

Inst. App
Distr. App

Adv. Interface

the Cloud

App Development Platform

Distr. Capacity Framework

Distr. Data Mngmt

Device-service

Service
Gateway

Frind-end Inst.

Back-end Inst.

Device 3

Global
Service

Governance

Developer

Developer

Fig. 1. Architecture of the NEOP app development and execution platform.

locally and remotely in an indistinguishable manner. They also

allow hardware vendors to support them without major efforts

to be included in the new ecosystem. (2) Self-managed end-

device peer-to-peer (P2P) networking for high resilience and

robustness. NEOP doesn’t require any centralized server(s)

to establish its multi-end networked platform, either remote

server(s) in the cloud or local one(s) for coordinating op-

erations in the platform. This is especially important when

a user moves from one setting (e.g., his home) to another

one (e.g., his office or a campsite) where (high-bandwidth)

Internet or local servers are not available. When the platform

can be P2P connected and its components, such as service

publication, location, subscription, and resource allocation, are

distributed across the end devices, it is a challenge to manage

the service with self coordination in a dynamic and sometimes

volatile environment, on aspects including network protocols

and data formats, resolution of service/resource conflicts, and

selection of the best device for a service request if there are

multiple eligible ones. In the meantime, the capability of local

decentralized self-management is not supposed to exclude the

option of centralized app market and selected service manage-

ment functionalities in the cloud to facilitate versatility of the

ecosystem. (3) Flexible implementation strategy for the market

penetration. There are two options to introduce the platform

into the mobile system market: either use of a new SDK

extended with NEOP capacities in apps or enhancement of

the Android framework with NEOP components. For the first

option an app needs to explicitly call functions for distributed

execution capability enabled by NEOP. This means modifi-

cation of existing apps to upgrade them to become NEOP-

compliant. For the second option, all the new capabilities are

added into the Android platform. That is, Android is upgraded

to the NEOP platform. An app can run on and benefit from

the NEOP platform with little modifications. While this option

is more desirable for app developers and will be pursued

as a complete solution, an extensive change of the official

Android to immediately reach billions of its users is required

but less practical. It is a challenge to design a technical path

incrementally moving from the first option to the second one

for the market acceptance. (4) Intelligent service selection.

When increasingly more IoT devices are available for one

specific capability, a selection out of them in response to a

user’s request has to rely on intelligence obtained by profiling

user’s history behaviors and preferences and a reliable learn-

ing model. (5) Strong security and privacy protection. As a

NEOP app may request service from many external devices

and is therefore exposed to possibilities of being attacked

and compromised, it is critical to strengthen the Android’s

policy and mechanisms on authorization, authentication, and

security/privacy protection in a distributed environment.

C. A Bird’s-eye View of NEOP’s Architecture

NEOP is a platform supporting development and execution

of traditional mobile apps and next-generation distributed

apps. Its architecture is illustrated in Figure 1. In the app de-

velopment platform shown in the left upper of the figure, with

the support of NEOP SDKs (e.g., service governance SDK,

3

Remote Device Consumer (RDC) Remote Device Provider (RDP)

WeChat Camera Music Game

Android Standard API RDM-SDK

Traditional Apps
Remote Dev.

App-level Access

NEOP Apps

RDC SDK

Audio Camera De/encoder… Sync

…

Device Provider SDK
(RDP SDK)

Remote Dev.
Registration

Dev Capability
Remotization

Audio Camera …..

Android System Service

Remote Dev. Sys-level Access

Audio
Service

Camera
Service

Sensor
Service ..…

RDC Service

Remote Dev. Access

CameraAudio …..

Remote HAL
Connector

Local Dev. Access APIDistributed Service
Governance

Sync

Audio
/video
Trans.

De/en
coder

CameraAudio Sensor …..

Audio RemoteAudio Camera Remote Camera Sensor RemoteSensor … …..

Distributed
Capacity

Framework

Interconnect
Channel

Fig. 2. The architecture of a remoted device and its access

capacity SDK, and data SDK) new apps can be developed

as natural-born distributed ones with advanced user interfaces

supporting voice and gesture inputs. In the meantime, Apps

developed in the Android platform can run in the NEOP

execution platform to have access of capabilities in other

devices. Without modifying the Android apps the NEOP

platform can redirect service requests to remote devices if

the requested capabilities are not locally available. An app

can also be composed with services that have been registered

in the NEOP execution platform. Such an app itself can be

registered in NEOP as a service for another app to call or use

in its composition. In addition, NEOP supports instant apps.

An instant app consists of multiple slices, Yaml configuration,

and resource directory. Each of the slices can be independently

and on-demand deployed on different devices. In a more

dynamic environment where a user requests a service for only

a few times (e.g., a traveler uses an airport app running on a

distributed platform including his phone and airport kiosk.),

such installation-free, light-weight, and customized instant

apps are appealing and well supported in the NEOP platform.

The NEOP platform is distributed over the cloud and

participants’ end devices. The app/service store is in the

cloud, where apps are registered for sharing. In addition,

the store conducts service certification and deployment. The

cloud server and each of the end devices have their respective

gateway modules, which serve as connectors to make remote

services available at local devices. Furthermore, they also

have a set of system service modules (Selection of Device

Service, Global User Resource Management, Dynamic Service

Management, and Distributed Service Governance) that allow

services at individual devices to be published, discovered,

selected, and accessed. On each of the end devices, there

is a front-end instance for interacting with users via either

traditional Android’s APIs, such as Activities, Notifications,

and Widget, or human-language-based instructions, such as

Google’s Built-in Intents [6]. The back-end instance pro-

vides services running in the background. As an extension

of Android’s framework, NEOP’s supporting infrastructure

includes instant app framework, distributed data management,

device-service remotization, distributed capacity framework,

and distributed security framework. These modules together

provide the upper-level service modules in the end devices

with data access, remote service access, and security supports.

D. Device Remotization

A critical foundation of NEOP’s distributed platform is

remotization of devices and making remote devices accessible

in a way similar to accessing local devices. To this end, NEOP

provides modules at the remote device side to enable Remote

Device Provider (RDP), and at the local app side to make

an app accessing the remote device be the Remote Device

Consumer (RDC). RDP and RDC are depicted in Figure 2,

which shows the architecture of device remotization. NEOP

has APIs specified in its SDK for each type of remoted

devices. Device vendors use the SDK to remotize their devices

and register their implemented services to the Distributed

Service Governance module at each RDC, so that they can

be discovered and reached.

There is a remote device access (RDA) module at the app

level or/and another one at the system level in a RDC. To

minimize changes in the apps or the difference between codes

for accessing local and remote devices, NEOP prefers to place

RDA in the system level. As shown in Figure 2, a regular

Android app accesses the Android System Service as usual

for a service provided by a local component, such as audio,

camera, or sensor, which then connects to the corresponding

remote HAL, such as remote audio HAL, in the Android HAL

module, if a remote device is selected. This remote HAL

is then connected to the RDA via the RDA’s remote HAL

Connector module. The RDA relies on the Distributed Service

Governance module to find and establish its connection with

the RDP and to receive its service over the network. The RDA

4

White List

PSD

Cloud

Device A PSD PSD

Device N PSD PSD PSD

PSD

…
…

Service
Governance

…
…

Remote Device

Remote Service
Manager

PSD
Manager

AppApp
App

AppApp
App

Android Framework

AMS

White List

PSD Manager

query PACKGE_ADDED
PACKGE_REMOVED

PMS Remote
Component

Resolver

Remote
Service

Manager

…

…
…

ResolveInfo

Dispatcher
Selection of

Device
Service

Permission Management

Remote
Intent

Remote
Binder

Remote
BC

Remote
CP

Launcher

Device
Discovery

Service
Data
Trans.
Channel

Service Processing
Device

Manager Local
Storage

SDK

PSD

PSD

Fig. 3. The architecture of distributed service governance module

includes capabilities of accessing various types of RDP, such

as audio and camera. It also provides basic functionalities,

such as AV encoding/decoding and synchronization. If a

remote RDP is not automatically selected by an intelligent

strategy, it is manually selected by the user. In this case,

the app can be upgraded with the RDM (Remote Device

Management) SDK to provide an interface for the user to make

the selection. Otherwise, the user can make his selection via

a UI of RDC for the entire system.

NEOP also provides a RDC SDK to allow the app-level

access of remote devices. In this case, an app can benefit

from NEOP’s distributed execution platform without having

to upgrade his Android OS to a NEOP-compatible one. The

app needs to explicitly access functionalities available in the

SDK, such as the AV encoding/decoding, transmission, and

connection to the remote RDP. The option of app-level remote

device access is important for NEOP to quickly reach app

developers and users and to motivate the community to adopt

NEOP . An example is the demand on introduction of a new

feature to some popular video-sharing mobile apps. A webcast

anchor on the apps often desires to have more scenes than that

the frond/back-end cameras built in his phone can capture. He

then can conveniently live-stream selected scenes, some of

which may be feeds from remote sites. The app on an OPPO

mobile device with a built-in system-level RDA can quickly

make the new feature available by accessing remote cameras,

while the one on a third-party device without a system-level

RDA in its system service can still enable the feature by

upgrading the apps with the RDC SDK.

Note that RDP and RDC can simultaneously run on one

device, which can then provide service to remote apps as

a RDP and access remote devices as a RDC. One example

device that plays the dual role is a smart watch. A watch

usually does not have a camera. If an app on the watch needs

to take a photo or create a video stream, it can assume the

role of RDC and requests service from a remote smartphone

with camera(s). In the meantime, for an app on the phone

the watch is a more accessible device to take user inputs and

display its quick response. In this case, the watch acts as a

RDP to provide service for the RDC on the phone.

To implement the remoted device service as an extension

of Android, NEOP uses Android’s existing code components

and system infrastructure as much as possible to take ad-

vantage of well-tested Android code base and to help with

NEOP’s market acceptance. As an example, in Android’s audio

HAL of the r submix type, an audio stream is sent to Au-

dioRecord/AudioTrack, an Android component for data buffer-

ing with well-defined interfaces for accessing its data stream.

For a local speaker, the data stream from the AudioTrack is

converted to the PCM stream for playing out at the speaker. For

easy access of the audio stream, NEOP’s remote audio HAL

is also of the r submix type. RDC can then use AudioTrack’s

output interface to conveniently receive the audio stream and

route it to a remote speaker’s RDP. This avoids the chores of

creating another interface to access the audio output stream,

such as the PCM stream from Audio HAL, and makes the

implementation more Android-compatible.

E. Distributed Service Governance

In NEOP’s distributed service platform, a service becomes

the main entity for management. It can be registered, dis-

covered, activated, or removed across multiple devices and

the cloud. This management module is named Service Gov-

ernance, whose architecture is depicted in Figure 3. A cross-

device service’s implementation at a device is encapsulated in

a PSD (Public/private Service Descriptor). A service can be

delivered only when it is associated with a PSD. A service

can be a public one, which is either built in the NEOP

system (e.g., MediaStore for providing media of common

types, such as audio, video, and image) or provided by a

third-party developer (e.g., GPS navigation service from a

map provider). A public service needs to be certified by

the platform before being published. A private service is

available only to apps developed by the service provider. For

example, a sports equipment supplier may install a private

service at its equipment, such as the treadmill and bike, for

5

MDD SDK

MDD at Cloud
Service Management

Dev MngmtUser Mngmt

Access AuthN Access API

Space ReclaimMonitoring

M
on

go
DB

Distributed Apps

MDD Service
Service Management

Access
AuthN

User
Mngmt

Pub/sub Access
API

Storage Management

Ver. Control Index Mngmt
Data Chunking Log Mngmt

Branch Mngmt Obj. Mngmt

Storage Management

Space Reclaim Snapshot

Synchronization

Cloud
Sync

P2P
Sync

Base Library

Platform Abstract
LevelDB

Distributed Capacity Framework
OS

MDD SDK

MDD Service

LevelDB

Distributed Capacity Framework
OS

Distributed Aps

MDD SDK

MDD Service

LevelDB

Distributed Capacity Framework
OS

Distributed Aps

Device A Device B Device C

The Cloud

Fig. 4. The architecture of the Distributed Data Management module

its mobile app to remotely monitor and control the equipment.

A service’s PSD includes a list of TypeIDs, each representing

an implementation-independent service (such as Google’s BII

(Built-in Intents)) that this PSD has implemented if the service

is a public one or service URIs (Uniform Resource Identifier)

if it is a private one. It also contains DistPackgeInfo, indicating

package name, version code, app icon, and permission, as well

as service status, such as INSTALLED, AUTHORIZED, or

DEVICE ONLINE/OFFLINE.

The service governance module has two major subsystems

to make cross-device services available and accessible. One

is service discovery. And the other is service invocation. For

service discovery, a device has a PSD Manager module for

locally provided services. New services are first registered in

the cloud. The module periodically retrieves a list of public

services (PSDs) matching the device type from the cloud,

where all registered public services are recorded. For each new

or updated PSD it checks its corresponding package in local

Android’s PMS and places matched PSDs into a local white

list. The module then scans the local packages to see if some

of their services are declared as distributed ones, which are

added to a list of private services. The updating of the white

lists for public and private services in the PSD Manager may

take place with each installation/removal of packages to keep

them up to date. The cloud and the Remote Service Manager

module will be notified of the updating. Each Remote Service

Manager dynamically tracks available services published by

other devices. It answers queries about availability of given

services as well as their hosting devices. With constant com-

munications between one device’s PSD Manager and another

device’s Remote Service Manager, information on up-to-date

available PSDs on the remote devices can be well maintained

to allow apps at a device to have a global view of the entire

system’s service availability.

To invoke a service, including data service, within a device

in Android, one has a number of methods, such as Intent,

Binder, Content Provider, and Broadcast. As services on

remote devices are made visible locally, NEOP extends the

methods to invoke remote services and can enable app-level

access of the distributed services with a NEOP SDK. When

it turns out that the services to be invoked are in the local

devices, the extended methods are functionally equivalent to

their respective original ones. It is optional to include info such

as device ID or device type in the methods’ APIs, depending

on if the apps explicitly designate certain device(s).

A service request is first sent to the Dispatcher module.

The module then passes the request to the Selection of Device

Service module, which matches the service requirement to the

PSDs in the Remote Service Manager. If there are multiple

PSDs meeting the request requirement, the module may either

select one according to factors such as user’s use history and

location, or ask for a selection from the user. The selection

module returns the selected PSD and device ID to the Dis-

patcher module, which then contacts the Launcher module.

The Launcher invokes one of the extended methods with the

PSD and Device ID as additional parameters. Note that before

the cross-device invocation is made, a permission has to be

granted at both device ends.

If the Service Governance is implemented at the system

level, the apps do not need to be modified. Instead, the Dis-

patcher and Launcher modules become part of the Android’s

AMS (Activity Manager Service). Remote Service Manager

and PSD Manager will supply their PSDs in response to

queries from Remote Component Resolver of Android’s PMS

(Package Management Service [7]), which makes the selection

of PSD for a requested service. While the PMS is capable of

carrying out service discovery, AMS sends its query to PMS

for a PSD for a service request from a user. It then uses one

of the methods for service invocation at a remote device.

F. Distributed Data Management

It is desirable for a distributed mobile computing platform,

such as NEOP, to have the support of a fully distributed

data service, instead of relying on a centralized database,

such as one at the cloud, for data access and sharing. A

fully distributed data management system allows user data

6

to stay at the end devices with the cloud storage as an

optional component in the system. In such a peer-to-peer (P2P)

structure, user data can be accessed and shared among local

devices often leading to lower latency and higher bandwidth

by removing round-trip communications with the cloud off

the critical path. This is especially beneficial in scenarios like

sharing of a large volume of streaming data or networking on

a bandwidth-limited mobile data service. With the potentially

high-performance data transfer directly between end devices, a

user can perform a copy&paste operation between two devices,

or switch video playing at a smartphone instantly to a playing

device in a smart car once he enters the car.

The goal of this Distributed Data Management is to enable

a Multi-End Distributed Database (MDD) that provides apps

in the platform with access of a light-weight data service via a

high-level API. The database is self-synchronized across end

devices and the cloud. The apps have a consistent global data

image without being involved in the management tasks such

as data placement, migration, and synchronization operations.

As shown in Figure 4, the Data Management module has a

device-end MDD component in each end device (specifically,

the MDD SDK to support apps’ service access and the MDD

Service module for data management) implemented at the app

level. It also has a cloud-side component as an option to assist

data synchronization.

The MDD Service module includes Service Management

component, Storage Management component, Synchronization

component, Base Library, and Platform Abstract. The Service

Management component is in charge of data security, user

accounts, data publication and subscription, and implementa-

tion of API in the MDD SDK. In particular, to access the data

service, both user and app need to be authenticated. It relies on

HeyTap Account SDK for user authentication. It obtains User-

Token for account login, uid generation, and token refresh. It

uses the OCS SDK for app authentication. Furthermore, data is

encrypted before its storage and communications. It leverages

the Storage Management module for data access.

The Storage Management component includes core database

service functionalities, such as Index management, MVCC

Versioning Control, Data Chunking, Log Management, Space

Reclamation, and Snapshot. It receives remote data from the

synchronization component for local data persistency and

sends local new or updated data to remote devices or the

cloud for synchronization. The actual local data storage is

implemented in the LevelDB subsystem, a key-value store

optimized for high-performance writes. The Platform Abstract

module provides a set of functions commonly needed at

devices, such as system time and socket.

To make data well organized and to conveniently enforce

access control, the platform places all data belonging to the

same user into a container named repository. All data from

the same app of a user is in a ledger. A ledger consists of

a number of pages, each of which stores a number of key-

value pairs. Therefore, a repository is owned by a user and

can be accessed by authorized users. Similarly, only authorized

apps can access data in a ledger. A ledger may have multiple

presences on devices, which are synchronized at the page unit.

This design accommodates a number of much desired

properties of the system. First, the design is efficient and

scalable. While both the number of devices and the number

of apps in a device in a NEOP platform may keep increasing,

the amount of the data and number of data objects will

correspondingly increase. Because the system needs to track

and automatically synchronize data distributed on the platform,

the management cost is likely to become excessive and non-

scalable. This issue is addressed by limiting management

operations within individual users/apps. In the system’s design,

data from different users and apps are placed into different

ledgers. The management system only provides data sharing

with a ledger. In particular, a ledger consists of multiple pages.

And the synchronization is provided only among a page and

its replicas on other devices. That is, tracking data change

and performing data synchronizations are at the unit of page,

rather than for individual data entries or an entire ledger,

for low management cost and high data transfer efficiency.

Second, the format selected for data storage and sharing is

general enough to conveniently support differently structured

user data. User data can be a short text message, a large video

file, and metadata of a distributed file system. All of these data

can be represented as key-value pairs (entries). In particular,

a large file can be split into multiple entries using Content-

defined chunking (CDC) for data de-duplication. Metadata

about a file-system directory can be represented as a collection

of (inode, directory content) entries. And a database table

can be conveniently broken down into (row, column) cells as

entries in a KV store. Third, the design leverages existing

mature software codes in its implementation. In particular, it

organizes all KV pairs in a page into a KV store and uses

LevelDB for its management. It uses Fuchsia’s distributed

storage system [8], Ledger [9], for its data synchronization,

including conflict resolution strategy.

III. NEOP IN THE CONTEXT OF ITS RELATED WORK

NEOP has been motivated by availability of diverse mobile

devices, demands from their consumers, and development

trend of mobile technologies (in particular, Android-based

mobile service platform). Its design represents a convergence

of years of efforts in the research community and vision in the

IT industry on next-generation distributed mobile platforms.

In the research community, people have long seen the

opportunities of leveraging diverse devices, such as TV dis-

plays, cameras, microphones, and speakers, in a mobile device

environment to expand capability of apps. There are many

proposed point solutions on specific devices, types of apps,

and use scenarios. However, compared to NEOP’s framework-

level system solution, these proposals have one or more of

the limitations. (1) Some assume a shared service (or a

functionality in an app) that has its unique set of APIs. And

an app has to be modified accordingly to access such services,

such as Miracast [1], MightyText [10], IP Webcam [11],

WiFi Speaker [12], and Remote Desktop Services [13]. The

specialized remote service sharing is highly limited and is thus

7

unlikely to become a general solution for any applications to

access shared resources. NEOP remotizes shared devices with

interfaces the same as their local counterparts, such as local

camera, screen, and speaker. This makes it possible for an

app to access remote services simply via transparent service

re-direction in the platform. (2) There have been efforts on a

cross-device platform for unmodified apps to access resources

shared by remote devices. These designs are often concerned

only with sharing a particular resource. For example, Any-

whereUSB [14] and Swiss Army Smartphone [15] make the

USB device remotely available. And Flux [16] allows multiple

remote screens to be used simultaneously with the display

of a local app. Some designs rely on changes in low-level

implementations for re-directing I/O data stream for I/O device

sharing. One example is Rio [17], which enables access of

remote devices via redirecting I/O to the local device file.

While this approach makes transparent device sharing possi-

ble, its low-level sharing strategy limits its ability for service

discovery and selection. In contrast, NEOP extends Android’s

facilities exposed to app developers to reach remote services,

instead of remote devices’ low-level functions. Specifically,

Binder and Intent are upgraded to remote Binder and remote

Intent, respectively. If a remote service, including a remotized

device that is presented as a remote service, is discovered and

selected for the sharing, the Binder or Intent is transparently

delivered to the remote service. All of the shared resources are

managed in one common service framework. This approach

enables service-level sharing and access of remote services,

such as in-app payment and SNS login. (3) Some share

services at the device level, rather than at the app level. For

example, Vysor [18] and Chromecast [19] project a screen

from one device to another device’s screen. However, it does

not support well-controlled sharing of a display, such as only

migrating a movie app’s output but keeping a messaging app’s

output at the local device. NEOP can conveniently support

differentiated access of remote resources for different apps

and even different windows of an app,

While NEOP is a platform supporting development and

running distributed apps, HarmonyOS [20] is developed as a

distributed OS for mobile and IoT devices. It enables seam-

less interconnection and coordination between smart devices

over DSoftBus, a unified communication infrastructure. Har-

monyOS uses a component-based design approach to tailor its

features to better fit into devices with relatively small amount

of DRAM (at 128 KiB to GiB-level). It intends to provide an

ecosystem as an Android alternative. As a comparison, NEOP

is developed to be a distributed app execution platform as an

extension of Android system, and maintains its compatibility

with existing Android. Its potential acceptance and impact can

be larger because (1) Android has penetrated and dominated

the mobile device and smart device markets; and (2) NEOP is

designed for the Android ecosystem from its beginning.

IV. CONCLUSIONS

In this paper, we propose NEOP , a distributed Android app

development and execution platform where various mobile and

IoT devices can dynamically participate and make their capa-

bilities available as remote services to apps running at different

devices. While it supports apps that are developed in place

to naturally use remote services, existing Android apps can

also be readily ported to the platform to become distributed.

This platform is developed in response to explosive emergence

of smart devices with rich and diverse capabilities in various

places and great demand on easily accessing of them. Instead

of being simply a collection of point solutions for individual

devices/services, NEOP provides a coherent framework with

architectural and protocol supports for devices to publish their

services and for apps to reach them. Furthermore, it is highly

extensible to include new features and protocols allowing new

capabilities to be deployed and used.

As the NEOP platform is designed to introduce new features

and capabilities in the Android ecosystem, this paper focuses

on the architectural design and technical details concerning in-

tegration of NEOP’s design seamlessly into existing Android’s

system or service modules. Its performance, such as device

connection/response times and data synchronization/access

times, are comparable to their counterparts in the the existing

Android ecosystem. Actually as NEOP is developed for and

runs on the existing infrastructure, including networking and

the Android framework, its performance is mostly determined

by the existing Android ecosystem and will benefit from

continuous improvements on its efficiency. Currently, NEOP

has been in the phase of internal testing and vendor trials, and

its release is in the plan.

REFERENCES

[1] “Miracast,” http://www.wi-fi.org/wi-fi-certified-miracast.
[2] “Using binder ipc,” https://source.android.com/devices/

architecture/hidl/binder-ipc.
[3] “Intent,” https://developer.android.com/reference/android/content/Intent.
[4] “Content providers,” https://developer.android.com/guide/topics/

providers/content-providers .
[5] “Broadcasts overview,” https://developer.android.com/guide/

components/broadcasts .
[6] “App actions built-in intents,” https://developers.google.com/assistant/

app/reference/built-in-intents .
[7] “Packagemanager,” https://developer.android.com/reference/android/

content/pm/PackageManager .
[8] “About fuchsia,” https://fuchsia.dev/ .
[9] “Ledger,” https://fuchsia.googlesource.com/fuchsia//+/020330

bdeddad1b77e8a866ff6202106ba8e200f/src/ledger/docs/README.md .
[10] “Sms text messaging,” https://goo.gl/oLXH0T.
[11] P. Khlebovich, “Ip webcam,” https://goo.gl/FQgQst.
[12] W. Morrison, “Wifi speaker,” https://goo.gl/N128Ar.
[13] “Microsoft remote desktop services.” https://technet. microsoft.com/en-

us/windowsserver/ee236407.aspx.
[14] D. International, “Anywhereusb,” http://www.digi.com/products/usb/

anywhereusb.jsp.
[15] A. Hari, M. Jaitly, Y.-J. Chang, and A. Francini, “The swiss army

smartphone: Cloud-based delivery of usb services.” New York, NY,
USA: Association for Computing Machinery, 2011.

[16] A. Van’t Hof, H. Jamjoom, J. Nieh, and D. Williams, “Flux: Multi-
surface computing in android,” in Proceedings of the Tenth European
Conference on Computer Systems, ser. EuroSys ’15, 2015.

[17] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong, “Rio: A system
solution for sharing i/o between mobile systems,” ser. MobiSys’14.

[18] ClockworkMod, “Vysor,” https://www.vysor.io/, 2019.
[19] Google, “Chromecast,” https://store.google.com/product/ chromecast,

2019.
[20] Huawei, “Harmonyos,” https://www.harmonyos.com/.

8

