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Abstract Stride prefetching is recognized as an important technique to improve memory access performance. The
prior work usually profiles and/or analyzes the program behavior offline, and uses the identified stride patterns to guide
the compilation process by injecting the prefetch instructions at appropriate places. There are some researches trying to
enable stride prefetching in runtime systems with online profiling, but they either cannot discover cross-procedural prefetch
opportunity, or require special supports in hardware or garbage collection. In this paper, we present a prefetch engine
for JVM (Java Virtual Machine). It firstly identifies the candidate load operations during just-in-time (JIT) compilation,
and then instruments the compiled code to profile the addresses of those loads. The runtime profile is collected in a trace
buffer, which triggers a prefetch controller upon a protection fault. The prefetch controller analyzes the trace to discover
any stride patterns, then modifies the compiled code to inject the prefetch instructions in place of the instrumentations.
One of the major advantages of this engine is that, it can detect striding loads in any virtual code places for both regular
and irregular code, not being limited with plain loop or procedure scopes. Actually we found the cross-procedural patterns
take about 30% of all the prefetchings in the representative Java benchmarks. Another major advantage of the engine is
that it has runtime overhead much smaller (the maximal is less than 4.0%) than the benefits it brings. Our evaluation with
Apache Harmony JVM shows that the engine can achieve an average 6.2% speed-up with SPECJVM98 and DaCapo on
Intel Pentium 4 platform, in spite of the runtime overhead.

Keywords stride prefetching, dynamic profiling, runtime system

1 Introduction

Software prefetching is widely used for improv-
ing memory access performance. A couple of typi-
cal prefetching techniques were developed to guide the
insertion of prefetch instructions into programs[1−6].
At the same time, researchers in compilation area
proposed various algorithms to automatically identify
the prefetch opportunities and insert prefetch instruc-
tions into compiled code[3,7,8]. It is relatively easy to
prefetch array-based data references in numerical ap-
plications, while it is challenging to effectively prefetch
pointer-chasing data structures because there exist dif-
ficulties in discovering prefetch patterns in irregular
code. Wu et al.[1] developed a value profiling method
of discovering stride patterns for irregular programs.
Their work yielded significant performance improve-

ment with SPEC2000; however, the proposed method-
ology is only applicable to static compiler and offline
profiling. Robert et al.[2] proposed a technique that
supports post-link stride prefetching, which does not
require source code availability or recompilation. Their
work still needs offline profiling with training input set.

Dynamic online profiling is more desirable some-
times than the offline profiling, because it provides the
same context (runtime environment and data input) for
both profiling run and execution run[4,5]. It is espe-
cially interesting with the popularity of management
runtime systems, such as Java, C#, Ruby, etc., due to
the nature of JIT compilation. Since program analysis
and compilation are conducted right before a method
is going to be executed, it is usually infeasible to have
pre-execution instrumentation or offline profiling.

The major challenge to dynamic profiling is the run-
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time overhead control. Since the profiling overhead is
considered a part of the overall execution time, it should
be kept minimal in order to be amortized by the im-
provement memory accesses. The commonly used on-
line profiling techniques include execution sampling[9]

and program instrumentation[10], or both [11]. Exe-
cution sampling can be done in pure software (e.g.,
stack frame sampling) or with hardware assistance (e.g.,
cache miss sampling). Although execution sampling in-
curs low runtime overhead, it normally is incapable of
getting the fine-grained profiles based on program se-
mantics, such as basic block frequencies or value profile.
Program instrumentation is perceived to have “oppo-
site” characteristics to execution sampling. That is why
sometimes a hybrid method is used, but the method
proposed by Arnold et al.[11] is not very useful when
collecting the necessary information for stride prefetch-
ing, i.e., the address values of successive load opera-
tions. Inagaki el al.[4] suggested a light-weighted run-
time profiling method of stride prefetching, where the
loops in a method are interpreted for a few iterations
before JIT compilation. This method can discover the
stride patterns in loops; however, it does not support
cross-procedural prefetching.

In this paper, we propose a runtime prefetch en-
gine. The engine uses program instrumentation to trace
load addresses; it can detect stride patterns in any vir-
tual code places. Once a stride pattern is discovered,
the engine modifies the compiled code to inject the
prefetching instructions and remove the instrumenta-
tions. In order to reduce the profiling overhead, the
engine avoids instrumenting the same data loads more
than once. The engine also eliminates useless instru-
mentations adaptively at runtime. We implemented the
engine in Apache Harmony, a product-grade JVM[12],
and evaluated the performance with SPECJVM98[13]

and DaCapo[14] benchmarks on an Intel Pentium 4 ma-
chine by using its prefetch instruction[15]. The result
shows that an average 6.2% speed-up can be achieved
in spite of the 4.0% profiling overhead.

The major contributions of this paper are as follows.
First, we developed a runtime pattern detection

mechanism, which can discover cross-procedural oppor-
tunities, besides those in plain loops for cross-iteration
and intra-iteration prefetchings. To the best of our
knowledge, this is the first attempt to discover all of
them at runtime.

Second, in order to reduce the runtime profiling over-
head, we only instrument one of multiple loads to the
same data with program analysis. Moreover, we can
remove the useless instrumentations at runtime.

Third, we put together the techniques we devel-

oped into a runtime prefetch engine, implemented it
in product-grade JVM, and evaluated the results with
representative workloads.

The remainder of the paper is organized as follows.
In Section 2 we introduce the runtime prefetch engine,
with focus on the pattern detection mechanism. In Sec-
tion 3, we discuss the techniques to reduce profiling
overhead. In Section 4, we present the evaluation re-
sults. We discuss related work in Section 5. In Section
6, we conclude the paper and suggest the work for next
step.

2 Runtime Prefetch Engine

In this section, we will describe how our runtime
prefetch engine works. Since the work was implemented
in JVM, we will first give a quick introduction to some
JVM specific concepts.

2.1 Load Operations

All the heap accesses in JVM can be classified into
table accesses and object accesses. (The rest memory
accesses are mainly to stack and code, which are usually
not considered as parts of heap in JVM.) The major-
ity of heap accesses are object accesses, e.g., they take
90% of total heap accesses in several benchmarks in
SPECJVM98[16]. In this work, we only consider object
accesses, which include the accesses to both object fields
and array elements. For accessing an object in JVM,
the object reference should be put on the stack first,
and then a getfield or xaload (x is a wildcard for array
element type) instruction dereferences the stack value
to read the object field or array element in the heap.
Basically the runtime prefetch engine instruments these
load instructions to profile the target address values,
and tries to prefetch the data once a stride pattern is
discovered.

When two load instructions are executed closely in
time, and their load address values show some striding
difference patterns repeatedly, we call them a pair of
related instructions (RI). Related instructions are the
interesting targets for prefetching optimization. They
have to be close enough in execution time so that the
fetched data by one instruction can be useful to the
other one; otherwise, the fetched data in cache could
have been flushed before the second instruction uses it.
Note related instructions can be the same one but ex-
ecuted repetitively, which is common for the loads in
loops.

Fig.1 gives three representative code examples ex-
tracted from SPECJVM98 jess and Dacapo pmd. The
first example in Fig.1(a) is a simple array access that
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causes lots of cache misses in a loop. It can be a good
candidate for cross-iteration prefetch. Fig.1 (b) is an
example that our compiler cannot identify that pop() is
invoked in a loop due to the multiple-level call chain,

In one method:

for (int j=RU.FIRST SLOT; j< fact.size(); j++){
if (fact.get(j).type()==RU.FUNCALL)}

ValueVector subexp=

fact.get(j).FuncallValue();

Value r = Execute(subexp, context);

fact.set(r,j);

}
}

Here is get():

public final Value get(int i) {
return v[i]; //frequent cache miss

}
(a)

In one method:

while (tok.ttypes==‘(’){
· · ·
tok=jts.nextToke();

}
Here is nextToken():

JessToken nextToken(){
· · ·
JessToken tok=(JessToken)

m stack.pip();

m string.append(tok.toString()+“ ”);

m lineno=tok.lineno;

return tok;

}
Here is pop():

public synchronized E pop(){
· · ·
int index = elementCount −1;

//frequent cache miss

E obj=(E)elementData[index];

removeElementAt(index);

return obj;

}
(b)

for(Iterator i=acus.iterator(); i.hasNext();){
ASTCompliationUnit node=

(ASTCompilationUnit) i.next();

visit(node,ctx);

}
(c)

Fig.1. Code examples that cause frequent cache misses with load

operations. (a) From SPECJVM98 jess. (b) From SPECJVM98

jess. (c) From DaCapopmd.

so it is a potential candidate for cross-procedural
prefetch. We found most of the load cache misses in
jess are caused by similar codes. Fig.1(c) does not show
the full code snippet for the load operation that causes
cache misses. We show it because it is a typical pro-
gramming pattern in Java with Iterator. The call chain
of get() cannot be inlined by our compiler as the ex-
ample in Fig.1(b). We will show that our runtime en-
gine can profile the code dynamically, identify the stride
patterns, insert prefetch instructions, and improve the
applications performance successfully.

2.2 Framework of the Runtime Engine

The framework of the engine is illustrated in Fig.2. It
consists of two components in a JIT compiler, a prefetch
controller, and a trace buffer.

When a JIT compiler is invoked to compile a
method, it processes the code to identify the candidate
load operations; then the compiler instruments the can-
didate loads to collect execution profile.

The profile data is recorded in the trace buffer which
is arranged as a Sequential Store Buffer (SSB)[17]. New
trace information is written into an entry of the buffer
sequentially. Each entry has three fields: the program
counter (PC) value, the address value of the object be-
ginning, and the offset value to the object beginning.
The trace buffer length is a fixed value. The memory
page after the trace buffer is write-protected. When the
buffer is fully filled, the next write will trigger a pro-
tection fault. The fault handler implements the func-
tionalities of the prefetch controller, which is the key
component of the engine.

To use write-protected faulting mechanism is better
than a counter increment and comparison, because the
then instrumentation code is free from the bookkeeping;
otherwise, the instructions for the counter increment
and comparison will appear for every instrumentation
site and spread over the entire compiled code base.

When the prefetch controller is invoked due to a pro-
tection fault, it analyzes the data in the trace buffer and
checks if there is any stride pattern exposed. If a stride
pattern exists, the prefetch controller will modify the
compiled code to inject the prefetching instruction in
place of the original instrumentation instructions; at
the same time, it tries to eliminate the useless instru-
mentations as well. The useless instrumentations refer
to those of the load operations which do not exhibit any
stride pattern after long enough profiling time. We will
discuss the details of the prefetch controller in following
text.
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Fig.2. Framework of our runtime prefetch engine. (The grey boxes are the components of the engine.)

Fig.3. Core data structures for runtime detection of stride pat-

tern.

2.3 Core Data Structures

Fig.3 is the core data structure for runtime detection
of stride patterns. The trace buffer holds the address
value profile of the instrumented loads. PC value in
each buffer item is the key to index a PC value hash ta-
ble. The hash table entry for the instruction at position
of PC maintains the information of its related instruc-
tions in a list, called “RI stride distribution list”. Each
hash table entry also records the frequency (f) of the
instruction executed up to the moment.

The RI stride distribution list for the instruction at
PCi records its executed RIs and the distribution of the
address differences between PCi and its RIs. One node
in the list is for one RI of PCi encountered at runtime.
For instance, in the figure, PC1 has three RIs: PCa,
PCb and PCx. The address value differences between
PC1 and PCa are kept in the node for PCa, which is
called a stride frequency array. Each element of the
array records the frequency of a certain stride value.

The trace buffer is full and the prefetch controller
is triggered, the prefetch controller analyzes the trace
data, and increments the execution frequency f for each
instruction appearing in the buffer. The prefetch con-

troller also updates the RI stride distribution list. It
computes the value difference between the addresses of
the load instruction and its RI, then increments the fre-
quency of the stride value in the corresponding element
of the stride frequency array. If the stride frequency
in a certain element becomes bigger than a threshold,
the prefetch controller believes a stride pattern is dis-
covered. It will modify the compiled method to inject
the prefetch instruction and cease the instrumentation’s
further effect. The prefetch controller may optionally
add a new node to the list if a new RI is encountered
during the trace analysis. Finally, the prefetch con-
troller resets the trace buffer pointer to point to the
first item for next cycle of trace collection.

2.4 Runtime Detection Implementation

The critical problem of our prefetch engine design is
how to control the runtime overhead. We had tried a
few approaches and finally chose the current one, which
we believe is a good balance between the prefetching
benefits and runtime overhead.

One tradeoff in our engine is about the trace buffer
design. We chose sequential store buffer with write-
protection as overflow checking. Although the fault
handler processing requires careful programming, SSB
saves the overflow checking overhead obviously. In our
implementation, the trace buffer has 4K entries, which
is large enough to catch stride patterns early while small
enough to be processed quickly.

When the prefetch handler is analyzing the data in
the trace buffer, it examines the instructions one by
one. For each instruction, it considers a number of suc-
cessive instructions in the buffer as its RIs. That is,
the prefetch handler uses a sliding window for RI fil-
tering. The window size needs not large, because RIs
should be close enough to keep the prefetching valid.
On the other hand, the size should be adequate so that
no important RI is missed. We found that 12 entries
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in the window suffice our requirements. The prefetch
controller takes one instruction in the trace buffer, and
updates its RI stride distribution lists according to the
following 11 buffer entries, then moves on to next in-
struction till the buffer end.

The stride frequency array for each RI maintains the
frequencies of different stride values. In our implemen-
tation, we only maintained the frequencies for stride
values between −40 through 40 with interval of 4. The
stride frequency array has 21 elements. Element i keeps
the frequency of stride value (i − 10) × 4. This makes
the frequency update operation very fast. This is es-
sential for the lightweight engine design. We tried the
approach mentioned in Robert et al.[2]; its overhead was
substantially higher than our approach. More impor-
tantly, our experiments with the benchmarks showed
that most of the stride values were within −40 ∼ 40.
More discussions are given in Section 4, Experimental
Evaluations.

When a stride frequency is updated, the prefetch
controller checks if it reaches the threshold to be a valid
stride to trigger prefetch instruction injection. The
threshold is set to be half of the trace buffer length,
i.e., 2K in our implementation.

2.5 Injection of Prefetch Instructions

When the stride value S is identified for an RI of cur-
rent load instruction, the prefetch controller injects the
prefetch instruction into the compiled code. Because
of the memory subsystem constraints, the real prefetch
distance is psd × S , where psd is an architecture de-
pendent value, called prefetch scheduling distance. psd
ensures that the data be prefetched into cache before it
is used by the related instruction. For example, a cross-
iteration stride pattern for a load instruction in a loop
may require to prefetch the data two or more iterations
ahead of its use, because the latency to fetch data into
cache can be multiple times of the execution time of an
iteration. A heuristic formula for psd computation is as
below[10]:

psd =
∣∣∣Nlookup + Nxfer × (Npref + Nst)

CPI ×Ninst

∣∣∣;

where Nlookup is the number of cycles for cache lookup
latency; Nxfer is the number of cycles to fetch a cache
line; Npref and Nst are the numbers of cache lines to be
prefetched and stored; CPI is the number of clocks per
instruction; Ninst is the number of instructions between
RI. For a cross-iteration prefetch in a loop, Ninst is the
loop body size.

When the prefetch controller modifies the compiled
code, it only needs to replace an original instruc-

tion with the prefetch instruction, as shown in Fig.4.
In Fig.4(a), the code after instrumentation actually
still keeps the original code in a branch. A counter
(bb counter) is incremented every time when the basic
block is executed. Initially, the original code is exe-
cuted. When the code is hot and the counter exceeds
a threshold, the execution path will follow the instru-
mentation branch. In Fig.4(b), the injected prefetch in-
struction replaces the counter comparison instruction,
and the execution path always takes the original code
branch. This trick makes the compiled code modifi-
cation simple. It does not require recompilation, and
avoids race condition for multithreaded applications.

Fig.4. Compiled code for instrumentation and prefetching. (a)

Code after instrumentation. (b) Code after prefetch instruction

injection.

3 Runtime Overhead Reductions

The key to the design of an effective prefetch engine
is the runtime overhead control. We tried to reduce
the runtime overhead throughout the engine, includ-
ing trace buffer arrangement, stride pattern detection,
prefetch instruction injection, the loads instrumenta-
tion and instrumentation elimination. We have dis-
cussed the implementation of stride pattern detection;
in this section we will discuss more on the runtime over-
head control in the components related to instrumen-
tation.

3.1 Eliminate Redundant Instrumentations

Prefetch instructions are not free in terms of resource
consumption. Excessive prefetchings not only take pro-
cessor cycles but also put pressure on cache hierarchy.
The adverse effect of excessive prefetchings becomes se-
rious when they are used in loops that have small loop
bodies or the loops performance is already bounded by
the memory subsystem. In our investigations, we found
Java programs have a common characteristic that the
data of same object is loaded repeatedly before a store is
conducted on it. The data can be different fields of the
same object or adjacent elements of the same array. In
this case, only one of the loads needs to be prefetched,
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and we only instrument that load. We discuss how we
achieve that for object and array accesses separately.

3.1.1 Object Instrumentations Control

It is not straightforward for JIT compiler to analyze
all the addresses dereferenced by load operations, since
they are mostly runtime values. We developed a clever
trick that can reduce the repetitive instrumentations
largely. We leverage the JVM property that a refer-
ence can only be dereferenced when it is on the stack.
We do not analyze the loads instructions directly; in-
stead, we can find the repetitive loads by analyzing the
instructions that put the references onto the stack.

In JVM, there are only two sources to get object
references. One is from local variables; the other is
from an object’s field. We studied the ratios of the two
sources in typical applications from SPECJVM98 and
DaCapo, we found most references on stack are got from
local variables: in 7 of the 9 applications, local variables
take more than 95% as reference source (see Table 1).

Based on the data above, we design an ultra
lightweight program analysis technique to detect repet-
itive loads. The conditions for repetitive loads are:

1) the addresses that two load instructions derefer-
ence are from the same local variable;

2) there is no store operation to the local variable
between the two loads;

3) the repetitive relation is transitive. That is, if
LoadA and LoadB are repetitive, LoadB and LoadC
are repetitive, then LoadA and LoadC are repetitive as
well.

To implement the design, JIT compiler maintains
a set of load operations appearing in the code. The
load operations are represented by the local vari-
ables where the references are got from. The data
structure is a state array indexed by local variable
indices: load state[num of localvar]. The elements
in the state array have only two possible states:
{NOT INSTRUMENTED, INSTRUMENTED}. The
state transition is dictated by a state machine shown
below in Fig.5. The compiler decides which load opera-
tions to be instrumented during its analysis on control
flow graph (CFG), with following state transition rules.

Rule 1. At first all the elements are set NOT IN-
STRUMENTED.

Rule 2. When code pattern (aload, getfield) is
encountered by the compiler for local variable i,
it checks load state[i]. If load state[i] is NOT IN-
STRUMENTED, the compiler marks the getfield in-
struction as “to be instrumented”. Otherwise, apply
Rule 3.

Rule 3. State INSTRUMENTED does not change
for pattern (aload, getfield), and the getfield instruction
is a repetitive load, so no instrumentation is needed.

Rule 4. When code pattern (astore) is met by the
compiler for local variable i, it checks load state[i]. If
load state[i] is INSTRUMENTED, the compiler will
change it to be NOT INSTRUMENTED. It means that
next time a load from local variable i requires instru-
mentation.

Rule 5. When two paths merge at a basic block,
the state arrays from both paths are merged as the in-
put array of current block. If NOT INSTRUMENTED
is represented by 0, and INSTRUMENTED by
1, the values of the state array is computed as
load state[i]=load state[i]path1|load state[i]path2; if there
are more entries to the block, apply the OR computa-
tion to the state arrays of all paths.

Although our algorithm for repetitive is simple, we
found it is surprisingly effective in reducing excessive
instrumentations.

Fig.5. State machine for repetitive loads detection.

3.1.2 Array Instrumentations Control

For the loads in loops, similar analysis as above can
help as well (by introducing array element index track-
ing), but we found loop unrolling is a simpler while ef-
fective method. Fig.6 presents an actual code example
in a benchmark application. After unrolling the origi-
nal loop four times, six instrumentations in every eight
can be saved. Loop unrolling not only helps to reduce
redundant instrumentations, but also helps to reduce
the useless prefetch instructions when a stride pattern

Table 1. Source Ratios of Object References Put onto Stack

% compress jess raytrace javac mpegaudio bloat fp ps pmd

Local Vars 97.3 96.1 96.6 96.5 95.7 95.7 95.4 78.2 76.3

Object Fields 2.7 3.9 3.4 3.5 4.3 4.3 4.6 21.8 23.7
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for (i = 0; i < n; i + +) {
OutBuff[OutCnt++]=buf[i];

}

(a)

for (i = 0; i < n;) {
profile(OutBuff[OutCnt]);

profile(buf[i]);

OutBuff[OutCnt++]=buf[i + +];

OutBuff[OutCnt++]=buf[i + +];

OutBuff[OutCnt++]=buf[i + +];

OutBuff[OutCnt++]=buf[i + +];

}
(b)

Fig.6. Loop unrolling to reduce excessive instrumentations. (a)

Original code. (b) Code with instrumentations after unrolling.

is discovered. Here, we want to point out that loop un-
rolling is supported by JIT in JVM. We discuss more on
the prefetch instruction injections in next subsection.

3.2 Eliminate Redundant Prefetchings

When a prefetch instruction is going to be in-
jected into the compiled code, the prefetch controller
decides whether it is redundant. When a prefetching
fetches data that is not distant enough from a preced-
ing prefetched data, it is considered redundant. The
minimal distance between the data addresses of two
prefetchings is the length of the cache line of the un-
derlying processor, which is available at runtime.

There are two cases that redundant prefetchings can
exist. One is that, the prefetch controller wants to in-
ject two prefetch instructions at the same code place for
two different RIs of the same load operation. The other
case is that, the two prefetch instructions are for dif-
ferent loads. In order to avoid redundant prefetchings,
the prefetch controller maintains a list of prefetch in-
structions injected for each method. Every time when
a new stride pattern is discovered, the prefetch con-
troller checks if the stride is distant enough from exist-
ing prefetchings. Only the distant enough prefetchings
are injected.

3.3 Remove Useless Instrumentations

An instrumentation in a hot method can be replaced
by a prefetching when a stride pattern is detected. But
there are cases that no stride pattern exists for the in-
strumented hot methods. The prefetch controller tries

to remove those instrumentations once identified use-
less.

It is easy to know a useful instrumentation, while it
is not so easy to determine a useless one. This is one
of the key differences between runtime profiling and of-
fline profiling. With offline profiling, the usefulness is
decided after the profiling execution passes. But this is
infeasible for online profiling because there is no sepa-
rate profiling execution pass.

We adopt a simple heuristic to decide useless in-
strumentations. As we introduced in Section 2, the
prefetch controller maintains the execution frequency of
an instrumented load instruction. When the prefetch
controller is invoked, it processes the profile for each
instruction in the trace buffer. When it finds the fre-
quency of an instruction is higher than a threshold with-
out a pattern discovered, the prefetch controller consid-
ers there is no pattern existing for the instruction, and
will remove its instrumentation. The removal can be
simply done by replacing the branch instruction in the
instrumentation code to a no-op.

4 Experimental Evaluations

We evaluated the runtime prefetch engine about its
effectiveness with Java programs. We present the eval-
uation results in this section.

We used Apache Harmony[12] for the study. The
compiler part of the prefetch engine is implemented in
the Jitrino component, the optimizing JIT compiler of
the JVM. The prefetch controller is implemented in
a separate component. We collected the data with
JVM benchmarks SPECJVM98 and DaCapo①. The
machine we used for the evaluation is a 2.6GHz Pen-
tium 4 with 1GB RAM. The L1 cache in the processor
has 8KB size, 4-way set-associativity and 64 bytes per
line. The L2 cache has 256KB, 8-way and 128 bytes
per line. The OS is Fedora Core 4 Linux. The param-
eters for “prefetch scheduling distance” are set to be
Nlookup = 60, Nxfer = 25, Npref = Nst = 1, CPI = 1.5.

According to the psd computation formula, the ex-
ample codes in Fig.1 have different psd values. Fig.1(a)
has 4, Fig.1(b) has 3, and Fig.1(c) has 1. All of their
most frequently profiled stride values are 4 bytes, so
their prefetch distances are D = 16, 12, 4 bytes. Since
they are smaller than the cache line size, we can unroll
the loop n times, where n is the cache line size divided
by D; and then prefetch next cache line in every itera-
tion.

①At the time the work was done, we could not run all the DaCapo applications, so we have only the data for the working
applications.
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4.1 Performance Speedups

Fig.7 shows the speed-ups we achieved with the run-
time prefetch engine. The “average” bar has the arith-
metic mean values. The baseline is the default execu-
tion without the prefetch engine. The bars of “direct”
are the speed-ups without method inlining and loop un-
rolling. The “inline” bars introduce method inlining,
and the “inline + unroll” bars introduce loop unrolling
in addition to method inlining. In Fig.7, three applica-
tions have negative speed-up for “direct” and “inline”
bars, which were caused by redundant prefetch and in-
strumentation. Loop unrolling can eliminate them. We
can see that, with loop unrolling, the negative speed-
ups become positive, and the prefetch engine can speed
up the benchmarks up to 13.2%, with an average of
6.23%. Even the minimal speedup with raytrace is
2.1%. Without inlining or unrolling optimization, the
straightforward prefetching can still get an average of
4.91% speed-up.

Fig.7. Performance speed-ups with runtime prefetch engine.

Loop unrolling is more effective in improving the
speedups than method inlining. As we discussed in
last section, loop unrolling can reduce redundant instru-
mentations and also help to reduce excessive prefetch-
ings. Although it does not help to expose more
prefetching opportunities, loop unrolling helps to re-
duce the runtime overhead. The overhead reduction
contributes to the overall performance of the runtime
systems.

We observed some applications get lower perfor-
mance when loop unrolling is introduced. It is due to
our compiler. Loop unrolling increases the method size,
which leads the compiler not to inline some small meth-
ods.

During the experiment, hardware prefetch is on.
Hardware prefetch does not improve Java applica-
tion’s performance much, there are mainly two reasons.
Firstly, hardware prefetch requires two successive cache
misses in the last level cache to trigger the mechanism;
these two cache misses must satisfy the condition that
strides of the cache misses are less than 256 bytes. Sec-
ondly, it can prefetch up to 8 simultaneously, which is

not adequate for our benchmarks.

4.2 Distribution of Related Instructions (RIs)

We collected the counts of RIs in the applications as
shown in Fig.8. We classified the related instructions
into three categories: cross-iteration, intra-iteration,
and cross-procedural. We found the counts for the
three categories are similar. Interestingly, the cross-
procedural part takes about 28% of total RI count. This
can partly explain why Inagaki et al.[4] achieved only
2.0% speed-up for jess on Pentium 4, whereas we got
12.8%. Jess has 33% RIs which are cross-procedural.

Fig.8. Counts of related instructions in three categories.

The RI counts also explain why raytrace can only get
speed-up after loop unrolling. The reason is, raytrace
has too many RIs, which incurs lots of runtime over-
head in both profiling and prefetching. Loop unrolling
can effectively reduce those overheads in raytrace.

4.3 Cache Misses and DTLB Misses

The benefits of prefetching come from the mem-
ory access improvement, which can be reflected by the
changes in cache misses and DTLB misses. We collected
the data using Intel VTune Performance Analyzer[18].
The prefetch version used in the measurement did not
have the optimizations of either method inlining or
loop unrolling. The metric used is “misses per instruc-
tion” (MPI), which is the number of misses divided
by the number of retired instructions. Fig.9 shows the
reduction of L2 cache misses and DTLB misses with the

Fig.9. Cache misses and DTLB misses reduction with direct

prefetching.
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Table 2. Memory Dynamic Overhead of the Runtime Prefetch Engine

(KB) compress jess raytrace db javac mpegaudio jack bloat fop ps pmd

Dynamic memory overhead 6 3 20 9 8 16 3 11 18 3 9

direct prefetching version, compared to the baseline no-
prefetching version. We can see the average reductions
for both cache misses and DTLB misses are almost the
same (17%).

It is interesting to notice that, the data in Fig.9 cor-
respond to the direct prefetching performance data in
Fig.7 very well: the three applications that have nega-
tive miss reductions are the same as those with nega-
tive speed-ups in direct prefetching version. The three
applications are raytrace, javac and mpegaudio. We
asserted their miss reductions would become positive
when loop unrolling was applied, which was confirmed
in our experiments, but the data are not shown here.

4.4 Overhead of the Prefetch Engine

The runtime overhead of the prefetch engine is an im-
portant factor deciding if the engine is effective. We use
total retired instruction count to represent the runtime
overhead, and collect the data with two versions. One
does not eliminate the redundant instrumentations, and
the other does. The data are given in Fig.10.

Fig.10. Runtime overhead of the runtime prefetch engine.

Without redundant instrumentation elimination, the
runtime overhead is unacceptably high, with an average
of 29% and minimum of 6%. As a comparison, the ver-
sion with redundant instrumentation elimination has
much less overhead, ranging from 1% to 4%, with an
average of 3%. This means the instrumentation elimi-
nation technique is highly effective and it is critical for
the prefetch engine to get performance improvement.

We also collected the memory overhead of the
prefetch engine shown in Table 2. It shows the dy-
namic memory overhead in kilo bytes, including the

memory for PC hash table and RI stride distribution
lists. The static memory overhead of 48KB trace buffer
is not counted. The maximal dynamic memory over-
head is only 20KB, therefore we believe the memory
overhead of the engine is actually negligible.

4.5 Distributions of Stride Values

Since the stride detection mechanism in the engine
can only discover the stride values in range of −40
through 40 with interval of 4. It is interesting to know
if the range will miss some stride pattern opportuni-
ties. We collected all the stride values in the applica-
tions. We found the occurrences of the values out of
the range [−40, 40] are almost negligible. This suggests
we did not miss any important opportunities. Fig.11
shows the distributions of the stride values in the range
of [−80, 80]. It clearly shows that stride values between
−12 and 12 take most (i.e., 98.3%) of all the stride oc-
currences.

Fig.11. Distributions of stride values.

5 Related Work

Stride prefetching has been used widely in modern
software systems to hide cache miss latencies. We clas-
sify the existing profile-guided techniques into two cat-
egories: offline profiling and online profiling.

Based on offline profiling, Robert et al.[2] proposed a
technique which that supports post-link stride prefetch-
ing. Their technique does not require source code
availability, can instrument the binary and profile with
training input set, and then uses the strides discov-
ered to insert prefetch instructions into the executable
directly. Wu et al.[1] developed a compiler technique
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for efficient offline profiling and stride prefetching for
irregular programs. The compiler can inject different
prefetching code sequence for different striding scenar-
ios. As a comparison, our work conducts online pro-
filing and can discover striding patterns for arbitrary
kinds of load operations. At the same time, our work
does not require recompilation for prefetch injection
and instrumentation removal.

Based on online profiling, Adl-Tabatabai et al.[5] de-
veloped a software prefetch engine for managed run-
time system. Their work depends on hardware moni-
toring support to collect cache miss information, lever-
ages garbage collector to maintain the stride distances
between target objects, and then lets JIT compiler in-
ject prefetch instructions. Inagaki et al.[4] proposed an
ultra-lightweight profiling technique called object in-
spection. During the compilation of a method, the
dynamic compiler gathers the profile information by
partially interpreting the method using the actual val-
ues of parameters. Their technique can discover cross-
iteration and intra-iteration RIs. As a comparison, our
work is a pure software approach, and conducts pro-
filing during real execution. We do not recompile the
code, but we can eliminate the useless instrumentations
at runtime.

Besides prefetching techniques, object reordering or
data rearrangement can also improve the memory ac-
cess performance[19−21]. We believe software prefetch-
ing and object reordering can be used together, but the
striding patterns might be changed after object reorder-
ing, which needs further study.

6 Conclusions and Future Work

In this paper, we propose a runtime prefetch engine
for managed runtime system. The engine instruments
the program into JIT compiler for load address pro-
filing, detects the stride patterns periodically at run-
time. When a stride pattern is discovered, the engine
injects prefetch instruction and removes the instrumen-
tation effect. The key points in the engine design are
the tradeoffs between prefetching accuracy and runtime
overhead. In order to reduce the runtime overhead, we
developed techniques to remove the redundant instru-
mentations, control the prefetch instruction injections,
and disable the useless instrumentation. Our pattern
detection engine is light-weighted that we use a slid-
ing window to filter the trace information for runtime
analysis, and we use a stride frequency array that covers
stride range between −40 and 40. Finally, the exper-
imental evaluations show that the prefetch engine can
speed up SPECJVM98 and DaCapo benchmarks up to
13.2%, with an average of 6.23%. At the same time,

the maximal runtime overhead is less than 4%, and the
memory overhead is negligible.

Our next step is to combine the object reordering
technique with stride prefetching, which needs close
investigations into garbage collection algorithms. An-
other area we are looking at is to use hardware perfor-
mance monitors to collection trace information, so as
to reduce the runtime overhead even more. Compiler
analysis would be important in this case to relate the
hardware event with program semantics.
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