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Cycler: Improve Tracing Garbage Collection with Real-time 
Object Reuse 

Abstract 
Tracing garbage collection (GC) identifies dead objects by 

scanning the object-graph from the root set references. It is 

proven to be highly efficient and widely used in commercial 

managed runtime systems for Java, C# and scripting 

languages. However, tracing GC cannot identify the dead 

objects before finishing object-graph traversal. Hence the 

application cannot reuse the space of the dead objects in real-

time when the objects are no longer live. Even there are lots 

of dead objects, the system has to keep allocating new space 

for new objects until the object-graph is scanned, which has 

negative impact on both space efficiency, bandwidth 

efficiency and cache efficiency. The issue becomes serious 

with allocation-intensive applications. Some prior work tries 

to improve tracing GC with compilation analysis to identify 

the dead objects in compilation time. But they can only work 

with sub-optimal GC algorithm such as mark-sweep, and/or 

can only discover a small portion of the dead objects. In this 

paper we propose an algorithm Cycler that can reuse the dead 

objects in real-time before the object graph scanning. Cycler 

enhances the existing high-performance tracing GC with 

reference counting. The novelty of the algorithm is that it 

does not interfere with the existing optimal tracing GC, so it 

can effectively improve the overall performance, as long as 

the runtime overhead of reference counting is well 

constrained. To control the runtime overhead, Cycler only 

counts the object references of major types. In this paper, we 

describe Cycler design and implementation, and also present 

our evaluations with standard benchmarks. 

 

1. Introduction 
Garbage collection (GC) has been widely accepted for 

automatic memory management to improve the programmers’ 

productivity and software security. Most commercial 

advanced managed runtime systems adopt tracing GC as their 

default GC, where the live objects are identified by traversing 

the object graph from the root references. The unreachable 

objects are dead and recycled as garbage. Due to its various 

advantages in design and performance, tracing GC has been 

investigated thoroughly by the community and evolved into 

many algorithm variants, such as mark-sweep, semi-space, 

compacting, etc.  

Tracing GC has an obvious drawback. Depending on the 

object graph traversal for reachability analysis, tracing GC 

cannot identify the dead objects until finishing the object 

graph traversal. This means that the space occupied by the 

dead objects cannot be reused before a collection cycle 

happens. In a common design, a collection cycle usually 

happens when the heap space is full or close to be full. At that 

time, the heap might be mainly occupied by dead objects. 

SPECJBB2005 benchmark is a good example. We find that, 

for every running warehouse of SPECJBB2005, only about 

2.5M bytes live objects exist at any time point of its steady 

phase, and the live objects mainly stay in the latest allocated 

36M bytes heap space. When new objects are allocated, 

roughly equal number of old objects become dead at the same 

time. If a warehouse is given 256M bytes heap, the early 

allocated 220M bytes are almost all garbage when the heap is 

full. Up till then, a collection is triggered. 

The useless dead object space before a collection cycle has 

negative impacts. Firstly, the space usage efficiency is low. 

We observe that, in the submitted SPECJBB2005 scores 

recent years at SPEC.org website, the heap sizes used are 

reported bigger and bigger. Enterprises purchase server 

systems with large RAM size for high throughput, but they 

probably do not expect the memory be not actively utilized. 

Secondly, ever-increasing memory footprint before next 

collection cycle means constant cache misses for object 

allocations. Consequently and worse, the frequent memory 

read/write might saturate the bus bandwidth. That seriously 

limits the applications’ scalability with multiple-core systems 

[1]. Enterprises purchasing multiple-core systems probably 

do not expect the bus bandwidth bottleneck be caused by the 

large heap size. Thirdly, if the tracing GC is not concurrent 

GC, the object graph traversal phase requires the application 

execution to pause in order to keep the object graph stable. 

Low memory usage efficiency means frequent application 

pauses. If the tracing GC is concurrent GC, the runtime 

overhead of write and/or read barriers degrade the overall 

system throughput compared to the stop-the-world GC. 

It is desirable if the managed runtime system can reuse the 

dead objects’ space in real-time. Then the problems described 

above can be largely relieved. Real-time object reuse here 

means two things: First is that the system can identify the 

objects immediately once they are no longer reachable or 

needed by the application; second is that the system can reuse 

the space of the dead objects for new object allocations right 

after their death. Some prior work tries to improve tracing GC 

with compilation-time analysis to identify the dead objects 

[2]. There are two major problems with this approach. Firstly, 

they can only work with sub-optimal GC algorithm such as 

mark-sweep, hence the resulted algorithm cannot achieve 

better performance than current sophisticated tracing GC. 

Secondly, compilation time analysis cannot discover the dead 

objects in programs that have complex access patterns. 

In this paper, we propose a new scheme for the runtime 

system to reuse the dead objects in real-time, called Cycler. 

In the scheme, we introduce reference-counting GC as a 

complement into the sophisticated tracing GC, so that the 
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tracing GC still works as usual in the garbage collection cycle, 

while the reference-counting GC works between two 

collection cycles (though the interval between two cycles can 

be enlarged due to the object reuse). The novelty of Cycler is 

that, it does not interfere with the existing advanced tracing 

GC, so the reference-counting GC only brings benefits as 

long as its runtime overhead of reference counting is well 

controlled. The recent work [3] in reference counting GC 

claims that the runtime overhead can be reduced to be as 

small as only 2.6%.  Cycler tries to further control the runtime 

overhead by only counting the references of selected object 

types. Those types are called major types. The main 

contributions of this paper are as follows: 

 Investigate the applications’ object allocation and 

collection behavior, and explore the opportunity of 

object reuse by introducing the concept of major type. 

 Design and implement a working algorithm that can 

best leverage both tracing GC and reference-counting 

GC, so that the system performance can be improved 

over the existing sophisticated tracing GC.  

 Propose a scheme that can reuse dead objects in real-

time between collection cycles without interfering with 

the existing tracing GC. The object reuse is designed to 

be only incremental to the tracing GC. 

 Evaluate our design with SPECJBB2005, 

SPECJVM2008, and Dacapo benchmarks. Our data 

show that the performance of SPECJBB2005 and 

SPECJVM2008.derby, Dacapo.chart is improved over 

Apache Harmony default parallel generational tracing 

GC. 

The rest of the paper is organized as the following. Section 2 

discusses the related work. Section 3 presents our design of 

real time object reuse. Section 4 introduces the detailed 

implementation of the scheme. Section 5 gives our 

experiment results and analysis. Section 6 concludes the 

paper and discusses future work. 

2. Related Work 
There are usually three approaches to automatically judging 

if the objects are alive or dead: compilation-time analysis, 

reference counting and reachability analysis (i.e., tracing GC). 

Compilation-time analysis like liveness analysis or escape 

analysis [4] tries to identify the objects’ live ranges. 

Reference-counting and tracing analysis are runtime analyses 

[5]. Reference-counting tries to find the objects that are no 

longer referenced (i.e., dead) by the application, while tracing 

analysis tries to find the objects that are reachable (i.e., live) 

by the application, then the rest are dead. Reference-counting 

and tracing analysis are naturally complementary. It is 

interesting to design some scheme that leverages their 

complementary nature.  

Bacon et al [6] points out that tracing GC and reference-

counting GC are in fact duals of each other. They show that 

all high-performance collectors, such as deferred reference 

counting and generational collection, are hybrids of tracing 

and reference counting. The work argues that a correct 

hybridization scheme can be selected based on system 

performance requirements and the expected properties of the 

target application. But they do not propose a new hybrid 

design. We find that tracing GC cannot discover one dead 

object earlier than another dead object. It can only discover 

all dead objects at the same time point – when finishing the 

object graph traversal. On the contrary, reference-counting 

GC can identify a dead object once its reference count drops 

to zero. That means tracing GC is very suitable for batch-

mode garbage collection, while reference-counting GC is 

good at real-time garbage collection. They can be hybridized 

without interfering with each other. 

Zhao et al [1] discover the issue of “allocation wall” in Java 

applications and claim that the issue can be relieved by object 

reuse. They categorize Java applications as fully scalable, 

partially scalable, and hardly scalable. They find that the 

partially scalable applications are also memory-intensive 

applications, and frequent memory writes due to objects’ 

eviction from the cache are the root cause of low scalability. 

They manually modify the applications to reuse objects. In 

this paper, we develop an automatic object reuse mechanism. 

Our data show that object reuse can not only relieve the issue 

of allocation wall, but also effectively reduce the batch-mode 

collection frequency, hence further improve the system 

performance. 

There is previous work [2, 7, 8] employing compilation-time 

analysis to identify dead objects and trying to work together 

with the tracing GC. Cherem and Rugina [7] propose an 

algorithm to identify object variables and object fields that 

hold unique references, and then instrument the programs 

with explicit deallocation of individual objects. The 

algorithm can only work with mark-sweep GC. The work 

shows performance improvement with a mark-sweep GC. 

However, mark-sweep GC itself is not widely accepted as the 

default main algorithm in current advanced runtime systems 

for its sub-optimal performance compared to copying or 

moving GCs.  

Guyer et al [4] identify dead objects by combining a 

lightweight pointer analysis with liveness information that 

detects the time point when short-lived objects die, then insert 

calls to free function. They conduct experiments by 

hybridizing their approach with mark-sweep GC and 

generational GC. They conclude that mark-sweep GC can 

benefit from the work, but generational GC cannot. They 

claim that “it is unlikely that any technique can beat the 

performance of copying generational collection on short-

lived objects.” In this paper, our work is incremental to 

existing GC, and can improve the performance of copying 

generational collection.  

Shankar et al [5] propose an enhancement to classic escape 

analysis with some novel heuristics to decide the scope of 

inlining and then inline to certain level. Experimental results 



 

 3 

show that the approach can identify over four times of non-

escape objects as the classic one does, and get an average 

speedup of 4.8%. The paper doesn’t clarify what GC is used 

in the baseline system. We believe that, since the escape 

analysis based system allocates objects on the stack, it can 

work with most algorithms that manage heap objects, 

including our system. 

There is some work recently trying to optimize reference-

counting GC. Some approaches are proposed [3, 9] to remove 

synchronization or to reduce the overhead of synchronization. 

Some other approaches [3, 10, 11] are proposed to make 

update operation of reference count less frequent. Harel and 

Erez [12] argue that the reference-counting overhead can be 

dramatically decreased and the atomicity requirement can be 

eliminated. They claim that reference counting becomes a 

viable option again for modern computing. Joao et al [13] 

propose an approach to accelerate reference counting with 

hardware support. Our paper does not mean to contribute 

further optimization in reference-counting, but to take 

advantage of it to enable real-time object reuse as an 

increment to tracing GC. Those optimization techniques can 

be applied to reduce the overhead of our system. 

Blackburn and McKinley [14] explore a hybridization of 

tracing and reference-counting in a generational GC, with 

tracing for young objects and reference-counting for mature 

objects. They can get 2% performance improvement over the 

baseline GC where mature objects are managed by mark-

sweep algorithm. Our approach does not replace the existing 

collection algorithm with reference-counting, but use it as an 

incremental enhancement.  

In this paper, we count the references of selected objects of 

certain types, which we call major types. It is an important 

characteristic of the application behavior. Similar concept is 

discussed as “prolific types” [15] and a type-based GC is 

proposed based on it. Yu et al [16] leverage the same property 

and propose a GC that divides heap space into reuse-space 

and non-reuse-space, and allocates objects of prolific types 

into the former where the collection will be triggered more 

frequently. Experimental results show that the approach 

performs 2.7%~8.2% on average better than some common 

tracing GCs except the generational GC. In contrast, our 

approach actually triggers the collection less frequently, 

because the object reuse defers the time of heap becoming 

full; and our work can achieve better performance than the 

generational GC. 

3. Cycler design for real-time object reuse 
Since tracing GC is dominant in current commercial managed 

runtime systems, we expect Cycler be designed with 

following conditions: 1) the existing advanced tracing GC in 

the system is not replaced; 2) the existing tracing GC is 

virtually not impacted; 3) the real-time object reuse is only an 

incremental enhancement that can also be disabled. These 

rules guide the Cycler design and its evaluation. 

Real-time (also called on-the-fly in some literatures) object 

reuse means to recycle the object once it is dead. As we have 

discussed in last section, real-time object reuse surely cannot 

happen at collection time, which recycles dead objects in 

batch-mode. Real-time object reuse must happen in 

application execution time (i.e., mutation time). To enable the 

mutation time object reuse, we need solve three fundamental 

problems:  

a) identify the objects’ death timely;  

b) mange the space of the dead objects; and, 

c) enable dead objects space reuse in object allocation.  

We describe how Cycler solves the problems in following 

subsections. 

3.1 Real-time objects death discovery 
To identify the heap objects death in real-time, there are only 

two ways: compilation-time analysis or reference-counting. 

As we have discussed, compilation-time analysis has its 

limitations in working with moving and/or generational GC. 

In our evaluation with SPECJBB2005, SPECJVM2008 and 

Dacapo, we find the compilation-time analysis can only 

discover a small portion of dead objects. For example, the 

String objects in SPECJBB2005 are intensively allocated and 

dead very young, but most of them are associated with global 

data structures and complex call graph, which makes the 

compilation-time analysis difficult. Cycler chooses 

reference-counting for real-time death discovery.  

Different from classic reference-counting, Cycler only counts 

the references of selected objects with following benefits:  

1) The runtime overhead of reference-counting can be 

constrained.  

2) The existing advanced GC can still collect garbage as 

usual. It is unaware of the existence of the reference 

counting. 

3) Cycler only identifies the death of the objects that are 

allocated after a collection and die before the next 

collection. Cycler never tries to handle the objects that 

can survive a collection; instead it leaves them to the 

existing tracing GC. This is a clever design choice, 

because the tracing GC is good at discovering live 

objects with reachability analysis, while reference-

counting is good at discovering dead objects timely. By 

counting only the objects that never survive a tracing 

collection, the two mechanisms work together 

seamlessly.  

4) Cycler only counts the references of one or two types that 

are prolific. This is not only to control the runtime 

overhead, but also makes the object reuse easy, because 

new object can be allocated directly in the dead body  of 

same type object. There is no space fragmentation and it 

also saves the time installing the type metadata (i.e., 

vtable pointer).  
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To select the objects for reference-counting, we propose the 

concept of major type. Major type of an application refers to 

the class that satisfies following criteria:  

i) Alloc_Percentage: Of all the objects allocated in the 

application, the number of the objects of a major 

type accounts for a significant ratio, e.g. 10% or 

more;  

ii) Surv_Percentage: Only a small portion of the 

objects of a major type can survive a tracing 

collection, e.g. 10% or less. 

Expressed formally, Alloc_Percentage of a type is the ratio 

of the objects allocated for the type to all the allocated objects 

between two collections (after last_collect and before 

curr_collect), as shown below. 

Alloc_Percentage(type) = Alloc_Size(type)/ Total_Alloc 

Here Alloc_Size(type) represents the number (or size) of the 

allocated objects of the type between two collections; 

Total_Alloc represents the number (or size) of all the 

allocated objects between the two collections.  

Surv_Percentage of a type is the ratio of the objects of the 

type surviving a collection to all the objects of the type before 

the collection: 

Surv_Percentage(type) = Surv_Size(type, curr_collect) / 

(Alloc_Size(type) + Surv_Size(type, last_collect)) 

Here Surv_Size(type, collect) represents the number (or size) 

of the live objects of the type after collection collect;  

For Cycler’s purpose, Alloc_Percentage is the higher the 

better, and Surv_Percentage is the lower the better. Since 

common applications usually spend most of the execution 

time in loops, and the types of the allocated objects in those 

hot loops are limited, they can be the good candidates of 

major types.  

To verify the major type concept, we investigate the object 

behavior of the String type and char[80] type in 

SPECJBB2005. As shown in Figure 1, along with the 

application’s execution, the size (and number) of allocated 

objects increases linearly. At the same time, the size of 

allocated objects of String type and char[80] type increases 

linearly as well, taking about two third of all the allocated 

objects. However, the size of live objects of the two types 

does not change. It keeps as a constant at only about 2M bytes 

throughout the execution. That is, the alloc_percentage of 

two types is 67% by size, and the surv_percentage of them 

depends on the heap size. With heap size of 256M bytes, only 

1.2% (by size) of them can survive a collection. 

 

Figure 1: Object behavior of major types in SPECJBB 

Major types can be obtained through profiling. With the 

statistic information on allocated objects before the 

collections and live objects after the collections, we can get 

the type distribution of the objects allocated and the survivor 

ratio of each type. To profile the major types, the application 

needs to go through several collection cycles to get stable 

alloc_percentage and surv_percentage. More details and data 

are given in following sections. 

Once the major types of an application are identified, the 

runtime system can instrument the program with reference-

counting of the major types. Note it is sometimes possible for 

the programmer to identify the objects’ death and manually 

code to reuse them. However, it is not always feasible in case 

of the applications that have complex logic. Manual reuse 

also depends on the programmer to manage the dead objects 

space at source code level, which is not always possible with 

high-level languages. Especially when the objects are passed 

as arguments to library method invocations, we find it is hard 

to know if the arguments still hold valid live references, and 

if the live references point to newly allocated objects in the 

library. 

3.2 Dead objects space management 
Most commercial tracing GCs use moving collectors. The 

surviving objects are moved to reduce space fragmentation 

and improve data locality. The moving collection is essential 

to support the bump-pointer allocation in thread-local 

memory block, where the new objects are allocated in a 

contiguous space by incrementing the allocation pointer 

linearly.  

It is easy to reuse dead objects space in mark-sweep GC 

because the recycled objects can be put back into the 

managed free space. But it is not easy to reuse them in a 

moving GC that has bump-pointer allocation. The difficulty 

lies in the fact that one cannot simply break the bump-pointer 

linearity by bumping it back and forth arbitrarily. Cycler 

solves the problem by not mixing up the dead objects space 

management with the bump-pointer allocation space. It 
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manages the dead objects separately with an in-place linked-

list. Here “in-place” means every dead object is a node of the 

list, and the link pointers are stored in the dead object body, 

which is no longer useful. The object header where the type 

metadata is stored is untouched. So there is no extra space 

needed for the reusable space management except the list 

head pointer, as shown in Figure 2.  

 

 

 

 

 

 

 

 

In fact, every application thread (i.e., mutator) maintains its 

own lists of the dead objects, one list for one major type. By 

operating with the list head, the list node insertion and 

removal can be as highly efficient as the bump-pointer 

allocation. When a tracing collection starts, the list head is 

reset to NULL, no matter whether there are nodes in the list 

or not. The tracing GC naturally recycles those left nodes. 

When the collection finishes, the mutator resumes its list 

maintenance by inserting newly dead objects and removing 

for new object allocation. We describe the new object 

allocation in next subsection. 

3.3 Dead objects reuse in object allocation 
Object allocation is a highly frequent operation in common 

applications. The allocation sequence is critical to the system 

performance. Since Cycler is intended to be incremental to 

existing advanced GC, it tries to keep the object allocation as 

lightweight as the original bump-pointer allocation.  

Intuitively, for each allocation request, Cycler can check if 

the new object has the same type (or size) with a major type, 

and then remove a node from the dead-object list for reuse. If 

the new object is not of a major type or there is no node 

available in the list, Cycler can proceed with the original 

bump-pointer allocation. However, this intuitive approach is 

not efficient because it adds at least one comparison operation 

in the critical allocation path. Cycler uses JIT (just-in-time 

compiler) to solve the problem.  

During a method compilation, the type information of every 

allocation is known to the JIT. The JIT can generate 

appropriate code for the allocation. If the type is a major type, 

the JIT can transform the allocation to invoke the routine that 

reuses dead object. Otherwise, it still uses the original bump-

pointer allocation routine. In this way, each allocation site in 

the program only has once compilation-time comparison. 

There is no more comparison needed at runtime. For the reuse 

routine, if the dead-object list has no node available at 

runtime, it falls back to the bump-pointer allocation path. In 

this way, Cycler hybridizes the allocations of dead objects 

reuse and original bump-pointer without any penalty. 

So far we have described the design idea of Cycler. We 

expect that the reference-counting effectively identify the 

dead objects and Cycler effectively reuse the space for new 

allocations. Then the heap space becomes full more slowly 

than without Cycler, and the next collection is deferred. In the 

extreme case, every new allocation request can be satisfied 

by a dead object reuse. Then the tracing collection will 

happen very rarely, which virtually results in a reference-

counting GC but does not have the drawbacks of a pure 

reference-counting GC, because it has the flexibility to 

automatically adapt between a tracing GC and a reference-

counting GC. Different GCs run best with different 

applications’ behavior. 

4. Detailed implementation of Cycler 
To evaluate our design, we implement Cycler in Apache 

Harmony [17], a product-grade open-source Java Virtual 

Machine. Harmony is developed with excellent modularity 

that makes it easy to research new features. The major 

components relevant to our work are the JIT compiler, 

garbage collector, and execution engine. Harmony 

implements many well-tuned GC algorithms, such as partial-

forward, semi-space, mark-sweep, move-compact, etc. with 

generational, parallel and concurrent variants.  The default 

configuration is a parallel generational GC with semi-space 

for young objects, mark-compact for mature objects and 

mark-sweep for large objects. 

4.1 Cycler infrastructure 
Figure 3 illustrates the features that we add into the three 

Harmony components JIT compiler, execution engine, and 

garbage collector.  

1. At runtime, when a method is first-time invoked, the JIT 

compiler is triggered to compile it into native code. It 

takes the profiling results of major types to instrument 

the compiled code with reference-counting (RC) for 

selected objects, insert free routine when reference count 

drops to zero and reuse routine for new allocations of 

major type objects. 

2. When the compiled method is executed at runtime, the 

reference-counts are updated according to the objects 

accesses. The free routine is called once a selected object 

is dead, and the reuse routine is invoked once a selected 

object is allocated. 

3. When the free routine is called, GC inserts the dead 

object into the reuse list. When the reuse routine is called, 

GC removes a node from the reuse list and returns it as 

the newly allocated object. 

We give more descriptions in following subsections. 

bump-pointer allocation pointer 

dead-object list head 

Figure 2: Dead objects space management 

allocation direction 

Object heap 
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Figure 3: Functionality modification to original Harmony 

4.2 Selective reference counting 
There are already various approaches proposed by the 

community on improving the performance of reference 

counting. For example, Levanoni and Petrank [3] claims that 

a well-designed reference-counting GC can achieve up to 2.6% 

negative performance compared with tracing GC. Since 

Cycler uses selective reference counting, we expect the 

overhead can be even lower. However, in this paper, we have 

not implemented those proposed optimizations by the 

community, since it is not Cycler’s purpose to investigate 

reference-counting optimizations. Cycler implements its 

plain reference counting with traditional compilation 

optimizations, so the runtime overhead is expected to be high. 

On the other hand, if we can achieve good performance in 

spite of the reference counting overhead, that would 

demonstrate that the cycler approach is indeed promising. 

To support reference counting, the system needs to do 

following things: 

1. Store the reference-counters somewhere to track the 

objects’ references; 

2. Add a compilation pass and design the intermediate 

representation (IR) for reference-counting; 

3. Insert operations at appropriate places to update the 

reference counters; 

4. Try to reduce the redundant reference update operations 

to control the runtime overhead. 

We describe them respectively in following text. 

4.2.1 Reference counter storage 
In Cycler, we choose to store the reference counter in the 

object itself. An extra word (four bytes) is appended to the 

original body of selected objects. A reference count may not 

need a full word, but it is simple and keeps the object aligned. 

To append an extra word has some implication in the object 

space management, but it is not an issue in Harmony because 

the Java object hash-code implementation already appends an 

extra word when necessary. 

Cycler only counts references of thread-local objects. When 

there is more than one thread accessing same selected object, 

it is simply discarded, i.e., its RC is not tracked any more. 

This is to save the cost of atomic operations. 

4.2.2 Compilation pass and IR 
We add a high-level optimization pass in Harmony JIT called 

ReferenceCountingPass. It basically inserts operations of 

calling reference update functions. We extend Harmony 

high-level IR with the operations in Table 1: 

Table 1: RC operations 

Opcode Operands  Semantics 

incRC tmp1 Increment RC of the object tmp1  

decRC tmp1 Decrement RC of the object 

tmp1  

updSlot [tmp1], tmp2 Decrement RC of the object 

whose reference is in address 

tmp1, and increment RC of 

the object tmp2 

Operation updSlot is used when a heap slot (address tmp1) is 

overwritten by a new value (reference tmp2). 

4.2.3 RC operations instrumentation 
The ReferenceCountingPass of Cycler scans a method twice. 

In the first-pass scanning, it inserts incRC for a selected 

object every time when its reference appears in the stack, and 

inserts updSlot for every time a heap slot is overwritten, 

except for the method argument and return value. The 

reference of an argument is hold in the caller’s stack frame. 

The reference of a return value also appears in the callers’ 

stack when current method returns. In the second-pass 

scanning, ReferenceCountingPass conducts simple liveness 

analysis for the objects whose RC is incremented by incRC 

or updSlot, and then inserts decRC for these objects at places 

right after an object reference is last-time used. 

Cycler also needs to update RC for native code. Since JNI 

specification defines the object manipulation interfaces, we 

only need instrument following interfaces: 

SetObjectFieldOffset, SetStaticObjectField, object_clone, 

and array_copy.  

It should be noted that Cycler also instruments the objects 

whose types are parent types of any major types. The 

operations will check the real types of the objects at runtime, 

and only update when they are major types. 

4.2.4 RC operations optimization 
If without any optimization, the overhead of reference-

counting can be unacceptably high. There are two factors in 

the overhead of reference-counting. One is the number of the 

operations, and the other is the cost of one operation. Cycler 

 JIT Compiler 

Replace alloc routine with reuse 

routine for selected objects 

Intrustment to enable RC for 

selected objects 

Execution Engine 

Garbage Collector 

Update RC for 

selected objects 

Free routine 

Free objects Reuse objects 
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Linked list of freed objects 

Trigger JIT compilation 

Call Call 



 

 7 

uses simple optimizations while reducing the overhead 

dramatically. Here we give two examples. 

To reduce the number of the operations, Cycler removes 

adjacent incRC and decRC pairs of same object. With this 

optimization, we can reduce the update operations for the 

return expressions, and for the assignment expressions to the 

variables of multi-definition. 

To reduce the cost of single operation, Cycler inlines the 

operations. Harmony has a technique that allows the VM 

developers to write VM helper routines in Java code, then 

Harmony JIT can inline the routines at the invocation sites. 

We write both the reference-count update operations and the 

free/reuse routines in Java code. They are inlined and 

optimized by the JIT. 

4.3 Reusing the space of dead objects 
As discussed previously, Cycler organizes the dead objects 

into a reuse list. Every time when a new allocation request of 

the major type comes, the head node of the list is removed 

and returned. The object header does not need to be refilled 

for type metadata, but the object body is zeroed. 

To support the space reuse, we extend the opcode decRC to 

decAndtestRC, so that every time when the RC falls to zero, 

the object is recycled. In that case, this operation continues 

the decrement and test operations recursively with the 

recycled objects’ field references, if they have major types.  

We also need a dedicated testRC opcode, because the 

redundancy optimizations might remove both incRC and 

decRC pairs in a method. But we still need to check the 

reference-count when it returns from a method call.  

To support the object allocation with reuse, we introduce 

allocType for major type object allocations.  

Table 2 shows all the finally introduced opcodes by Cycler. 

Table 2: All new operations Cycler introduces 

Opcode Operands Semantics 

incRC tmp1 Increment RC of object tmp1 

decAndtestRC tmp1 Decrement RC of object tmp1, test 

if it falls to 0; If true, recycle it and 

proceed recursively 

testRC tmp1 Test if RC of object tmp1 falls to 

0, and if so, recycle it and proceed 

recursively 

updSlot [tmp1], 

tmp2 

Decrement RC of object whose 

reference is in address tmp1, test if 

its RC falls to 0, and if so, recycle 

it and proceed recursively; 

increment RC of object tmp2 

allocType cls1, tmp1 Allocate a new object of class cls1 

by trying reuse first. If no dead 

object available, falls back to 

bump-pointer allocation. Let tmp1 

be the returned object. 

5. Experimental evaluations and analyses 
We evaluate our implementation of Cycler in Apache 

Harmony. In this section we describe our experimental 

evaluations and analyses. 

5.1 Evaluation setting 
We use Harmony default configuration for our evaluation 

since it is well-tuned [18, 19]. The default GC is a parallel 

generational GC that partitions the heap into three spaces, 

NOS (Nurse Object Space), MOS (Major Object Space), and 

LOS (Large Object Space). NOS is for new object allocation, 

and LOS is for large object management. MOS is for the 

surviving objects from NOS. By default, NOS is managed 

with semi-space algorithm, MOS with mark-compact 

algorithm, and LOS with mark-sweep algorithm. The sizes of 

spaces can adaptively adjust according to the application’s 

behavior dynamically. We specify 256M bytes as the default 

heap size unless otherwise stated. 

We use well-known benchmarks SPECJBB2005, 

SPECJVM2008 and Dacapo (2006 release) for the 

evaluations. We run the applications with single benchmark 

thread (e.g., one warehouse with SPECJBB2005) and 

multiple benchmark threads. Without explicitly stated, the 

data are with the single thread mode. The computer platform 

has Intel Core2 Quad CPU with 2.83GHz frequency and 

3.23GB RAM. 

5.2 Major types of the benchmarks 
We collect the major type data for all the applications of the 

three benchmarks. The data shows that almost all the 

applications have types that take significant ratio in total 

allocations. For example, among the 27 applications, 10 have 

a respective type that takes more than 50% of the total 

allocation size; another 8 have more than 20% of the total 

allocation size. In average of all the 27 applications, major 

types take 47% of the total allocation size.  

We also collect how fast the major types become steady in 

the course of application execution for all applications. The 

data shows that the pre-steady period takes less than 5% of 

total execution for one third applications. This means that 

profiling is feasible to identify the major types. There are a 

few applications that do not have steady major type from 

collection to collection. For those applications, full-run 

profiling might be needed. 

Here in this paper, due to length limitation, we only show the 

data of hree applications as the representatives, i.e., 

SPECJBB2005, SPECJVM2008.derby, and Dacapo.chart in 

Table 3 and  

Table 4. We choose them because they are most allocation-

intensive applications in the benchmark suites, i.e. they 

allocate most number of major type objects per unit time. 
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Table 3: Major types of the benchmarks 

Benchmark Major Types Alloc 

Perc.  

(size) 

Alloc 

Perc. 

(num.) 

Surv 

Perc. 

JBB2005 char[80] 54% 19% ~0% 

java.lang.String 13% 35% 10% 

derby java.math.BigDecimal 33% 26% ~0% 

java.math.BigInteger 28% 25% ~0% 

chart java.lang.String 35% 42% ~0% 

 

Table 4: Time needed to get steady major types 

Benchmark Pre-steady 

collection cycles 

Total collection 

cycles 

JBB2005 8 1977 

derby 45 704 

chart 1 22 

5.3 Overhead of reference-counting 
We measure the overhead of reference-counting in Cycler. To 

characterize the reference-counting overhead, we measure 

the application performance with basic selective RC and 

optimized selective RC while disabling dead objects 

recycling and reusing. The results are shown in Table 5. 

Table 5: Time overhead of RC 

Benchmark Instrumented types 
Basic RC 

overhead 

Optim. RC 

overhead 

JBB2005 
char[80] 

35.8％ 7.3％ 
java.lang.String 

derby java.math.BigDecimal 19.5% 6.5% 

chart java.lang.String 28.9% 13.0% 

We can see that the simple optimizations can dramatically 

reduce the overhead of basic reference counting. On the other 

hand, the overhead is still too high. We expect to apply the 

recent work in the community in next step to further reduce 

the overhead. 

It should be noted that we allocate extra four bytes for each 

instrumented object, so reference counting not only brings 

time cost, but also space cost. We expect the overhead can be 

amortized by the space reusing. The estimated space cost is 

given in Table 6. 

Table 6: Space overhead of RC 

Benchmark JBB2005 derby chart 

Overhead 3.4% 3.3% 5.8% 

5.4 Benefits of object reuse in single-thread mode 
We measure the performance of Cycler by enabling dead 

objects recycling and reusing. Table 7 shows the results with 

single-thread mode. 

Table 7: Benefits of real-time object reuse 

Benchmark 
Perf. 

Improvement 

Collection cycles 

reduction 

JBB2005 6.9％ 64.2％ 

Derby 5.2% 31.4% 

chart 3.0% 33.3% 

Here the performance improvement is computed against the 

selective RC implementation in last subsection. Collection 

cycles are the counts of garbage collections. We can see that 

object reuse does bring benefits, and the collection cycles 

have been reduced dramatically. 

To understand where the benefits come from, we collect data 

on the object reuse ratios, given in Table 8. 

Table 8: Object reuse ratios 

Benchma

rk 
Major type 

Reuse Ratio 

(size) of major 

type objects 

Reuse ratio 

(size) of all 

objects 

JBB200

5 

char[80] ~100% 54% 

String 71% 9% 

derby BigDecimal ~100% 33% 

chart String 87.5% 31% 

“Reuse ratio of major type objects” means that, of all the 

allocation requests of major type, the ratio of those satisfied 

by reusing dead objects. The ideal value is close to 100%, i.e. 

bump-pointer allocation is virtually unused for major type 

allocations. “Reuse ratio of all objects” is the ratio of reusing 

in all the object allocation requests. We can see that 

SPECJBB2005 has more than 60% of object allocations can 

reuse dead objects. Lots of object reuse effectively defer the 

triggering of next collection cycle, hence reducing the 

collection cost. 

Besides the benefit in space usage, object reuse also helps to 

improve the memory performance by reducing cache misses 

and bus bandwidth consumption. Table 9 shows the results 

we collect with Intel Vtune [20] performance analyzer. 

Table 9: Memory performance of object reuse 

Benchmark 

Reduction in 

memory bandwidth 

utilization 

Reduction in 

L2 cache miss 

rate 

JBB2005 33.3% 25.5% 

derby 18.2 21.1% 

chart 16.7% 12.8% 

Although we get obvious performance gain with object reuse 

compared to the selected reference-counting implementation. 

The single-thread absolute performance compared to that of 

without Cycler is still lower, because the object reuse benefits 

cannot mask all the RC overhead. There are two reasons: 

firstly our reference-counting implementation is 

straightforward without applying the state-of-the-art 

optimizations; secondly the applications in single-thread 
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mode are not seriously memory-intensive because the 

memory system of the platform is designed to sustain 

multiple-thread computation on multiple cores. Assuming the 

RC overhead can be controlled to be 2.6%, all the 

applications can have absolute performance gain even with 

single-thread mode. Next we investigate the benefits of object 

reuse with multiple-thread mode. 

5.5 Benefits of object reuse in multi-thread mode 
We collect the data in Table 10 for SPECJBB2005 running 

with four warehouses and derby with four benchmark threads. 

Chart is excluded in the experiment because it is a single-

thread application. Memory performance data is also shown 

in Here the “Absolute performance gain” shows the 

improvement of Cycler over Harmony default tracing GC. 

We expect to get more improvement with more sophisticated 

RC optimizations.  

Table 11. We choose four threads because the platform has 

four cores, thus the data are supposed to be the peak numbers. 

Table 10: Benefits with multi-threading applications 

Benchmark 
Overhead 

of RC  

Benefit 

of reuse  

Absolute 

perf. 

gain 

Reduced 

collection 

cycles  

JBB2005 6.1% 9.0% 2.3% 19.3% 

derby 4.2% 11.7% 7.0% 20.9% 

Here the “Absolute performance gain” shows the 

improvement of Cycler over Harmony default tracing GC. 

We expect to get more improvement with more sophisticated 

RC optimizations.  

Table 11: Memory performance with multi-threading  

Benchmark 

Reduction in 

memory bandwidth 

utilization 

Reduction in 

L2 cache 

miss rate 

JBB2005 7.1% 5.9% 

Derby 8.6% 9.5% 

As can be seen from the data, compared with single-thread 

mode, the multi-thread mode gets less reductions in 

collection cycles, memory bandwidth utilization, and L2 

cache miss rate, but Cycler brings much more significant 

benefits, which indicates that these three factors impact the 

performance of multi-threading applications more than that 

of single-threading applications.  

The last experiment evaluates whether Cycler can bring 

benefit with more heap size and more cores. We run 

SPECJBB2005 and derby on a machine with 4 Intel 

Dunnington CPUs (24 2.66 GHz cores) and 32GB RAM, 

with four heap size configurations: 256MB, 512MB, 786MB, 

and 1024MB. The data are the formal scores reported by the 

benchmarks. 

 

Figure 4 : Scalability under different heap size 

(JBB2005) 

 

Figure 5: Scalability under different heap size (derby) 

As can be seen from the figures, Cycler achieves better 

scalability under across all the configurations of heap size.  In 

average, Cycler has 3.2% ~ 6.2% better performance for 

SPECJBB2005 and derby. Besides, we observe that as heap 

size increases, the advantage of Cycler is more significant. 

The reason is that for larger heap size, the benchmark 

performance is more limited by those three factors mentioned 

previously. Actually Cycler achieves better scalabilities with 

SPECJBB2005 and derby with more cores than the default 

GC in our measurement. 

6. Summary and future work 
In this paper, we investigate the concept of major type, and 

propose a scheme Cycler to leverage the property by reusing 

the dead objects of major types in real-time. The novelty of 

Cycler is that, it does not interfere with the existing advanced 

tracing GC. We find that tracing GC cannot discover any 

dead object earlier than another dead object. It can only 

discover all dead objects at the same time point, i.e., when 
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finishing the object graph traversal. In contrast to that, 

reference-counting GC can identify a dead object once its 

reference count drops to zero. That means tracing GC is very 

suitable for batch-mode garbage collection, while reference-

counting GC is good at real-time garbage collection. Cycler 

hybridizes these two GCs without interfering with each other. 

Cycler only counts the references of the major type objects, 

thus the runtime overhead is smaller than a classic reference-

counting implementation. At the same time, the major type 

objects have low surviving ratio between two collections, 

which make highly efficient object reuse possible. In our 

evaluation with SPECJBB2005, SPECJVM2008, and 

Dacapo, Cycler can get absolute performance improvement 

with three allocation intensive applications with 

straightforward RC implementation. We expect that more 

sophisticated reference-counting implementation can bring 

more benefit and help to scale the applications with more 

threads. That is our next step work. 

We also need to investigate Cycler with more applications. 

One major task is to understand if object reuse can benefit 

less allocation-intensive applications. We also want to 

combine Cycler with compilation-time analysis to identify 

the object death, and then Cycler does not need to track the 

reference counts of all the major type objects. The RC 

overhead can be further reduced. In this way, a synthesis of 

compilation-time analysis, reference-counting, and tracing 

collection can be established that leverage the best results of 

the memory management community. 
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