

 1

Cycler: Improve Tracing Garbage Collection with Real-time
Object Reuse

Abstract
Tracing garbage collection (GC) identifies dead objects by

scanning the object-graph from the root set references. It is

proven to be highly efficient and widely used in commercial

managed runtime systems for Java, C# and scripting

languages. However, tracing GC cannot identify the dead

objects before finishing object-graph traversal. Hence the

application cannot reuse the space of the dead objects in real-

time when the objects are no longer live. Even there are lots

of dead objects, the system has to keep allocating new space

for new objects until the object-graph is scanned, which has

negative impact on both space efficiency, bandwidth

efficiency and cache efficiency. The issue becomes serious

with allocation-intensive applications. Some prior work tries

to improve tracing GC with compilation analysis to identify

the dead objects in compilation time. But they can only work

with sub-optimal GC algorithm such as mark-sweep, and/or

can only discover a small portion of the dead objects. In this

paper we propose an algorithm Cycler that can reuse the dead

objects in real-time before the object graph scanning. Cycler

enhances the existing high-performance tracing GC with

reference counting. The novelty of the algorithm is that it

does not interfere with the existing optimal tracing GC, so it

can effectively improve the overall performance, as long as

the runtime overhead of reference counting is well

constrained. To control the runtime overhead, Cycler only

counts the object references of major types. In this paper, we

describe Cycler design and implementation, and also present

our evaluations with standard benchmarks.

1. Introduction
Garbage collection (GC) has been widely accepted for

automatic memory management to improve the programmers’

productivity and software security. Most commercial

advanced managed runtime systems adopt tracing GC as their

default GC, where the live objects are identified by traversing

the object graph from the root references. The unreachable

objects are dead and recycled as garbage. Due to its various

advantages in design and performance, tracing GC has been

investigated thoroughly by the community and evolved into

many algorithm variants, such as mark-sweep, semi-space,

compacting, etc.

Tracing GC has an obvious drawback. Depending on the

object graph traversal for reachability analysis, tracing GC

cannot identify the dead objects until finishing the object

graph traversal. This means that the space occupied by the

dead objects cannot be reused before a collection cycle

happens. In a common design, a collection cycle usually

happens when the heap space is full or close to be full. At that

time, the heap might be mainly occupied by dead objects.

SPECJBB2005 benchmark is a good example. We find that,

for every running warehouse of SPECJBB2005, only about

2.5M bytes live objects exist at any time point of its steady

phase, and the live objects mainly stay in the latest allocated

36M bytes heap space. When new objects are allocated,

roughly equal number of old objects become dead at the same

time. If a warehouse is given 256M bytes heap, the early

allocated 220M bytes are almost all garbage when the heap is

full. Up till then, a collection is triggered.

The useless dead object space before a collection cycle has

negative impacts. Firstly, the space usage efficiency is low.

We observe that, in the submitted SPECJBB2005 scores

recent years at SPEC.org website, the heap sizes used are

reported bigger and bigger. Enterprises purchase server

systems with large RAM size for high throughput, but they

probably do not expect the memory be not actively utilized.

Secondly, ever-increasing memory footprint before next

collection cycle means constant cache misses for object

allocations. Consequently and worse, the frequent memory

read/write might saturate the bus bandwidth. That seriously

limits the applications’ scalability with multiple-core systems

[1]. Enterprises purchasing multiple-core systems probably

do not expect the bus bandwidth bottleneck be caused by the

large heap size. Thirdly, if the tracing GC is not concurrent

GC, the object graph traversal phase requires the application

execution to pause in order to keep the object graph stable.

Low memory usage efficiency means frequent application

pauses. If the tracing GC is concurrent GC, the runtime

overhead of write and/or read barriers degrade the overall

system throughput compared to the stop-the-world GC.

It is desirable if the managed runtime system can reuse the

dead objects’ space in real-time. Then the problems described

above can be largely relieved. Real-time object reuse here

means two things: First is that the system can identify the

objects immediately once they are no longer reachable or

needed by the application; second is that the system can reuse

the space of the dead objects for new object allocations right

after their death. Some prior work tries to improve tracing GC

with compilation-time analysis to identify the dead objects

[2]. There are two major problems with this approach. Firstly,

they can only work with sub-optimal GC algorithm such as

mark-sweep, hence the resulted algorithm cannot achieve

better performance than current sophisticated tracing GC.

Secondly, compilation time analysis cannot discover the dead

objects in programs that have complex access patterns.

In this paper, we propose a new scheme for the runtime

system to reuse the dead objects in real-time, called Cycler.

In the scheme, we introduce reference-counting GC as a

complement into the sophisticated tracing GC, so that the

 2

tracing GC still works as usual in the garbage collection cycle,

while the reference-counting GC works between two

collection cycles (though the interval between two cycles can

be enlarged due to the object reuse). The novelty of Cycler is

that, it does not interfere with the existing advanced tracing

GC, so the reference-counting GC only brings benefits as

long as its runtime overhead of reference counting is well

controlled. The recent work [3] in reference counting GC

claims that the runtime overhead can be reduced to be as

small as only 2.6%. Cycler tries to further control the runtime

overhead by only counting the references of selected object

types. Those types are called major types. The main

contributions of this paper are as follows:

 Investigate the applications’ object allocation and

collection behavior, and explore the opportunity of

object reuse by introducing the concept of major type.

 Design and implement a working algorithm that can

best leverage both tracing GC and reference-counting

GC, so that the system performance can be improved

over the existing sophisticated tracing GC.

 Propose a scheme that can reuse dead objects in real-

time between collection cycles without interfering with

the existing tracing GC. The object reuse is designed to

be only incremental to the tracing GC.

 Evaluate our design with SPECJBB2005,

SPECJVM2008, and Dacapo benchmarks. Our data

show that the performance of SPECJBB2005 and

SPECJVM2008.derby, Dacapo.chart is improved over

Apache Harmony default parallel generational tracing

GC.

The rest of the paper is organized as the following. Section 2

discusses the related work. Section 3 presents our design of

real time object reuse. Section 4 introduces the detailed

implementation of the scheme. Section 5 gives our

experiment results and analysis. Section 6 concludes the

paper and discusses future work.

2. Related Work
There are usually three approaches to automatically judging

if the objects are alive or dead: compilation-time analysis,

reference counting and reachability analysis (i.e., tracing GC).

Compilation-time analysis like liveness analysis or escape

analysis [4] tries to identify the objects’ live ranges.

Reference-counting and tracing analysis are runtime analyses

[5]. Reference-counting tries to find the objects that are no

longer referenced (i.e., dead) by the application, while tracing

analysis tries to find the objects that are reachable (i.e., live)

by the application, then the rest are dead. Reference-counting

and tracing analysis are naturally complementary. It is

interesting to design some scheme that leverages their

complementary nature.

Bacon et al [6] points out that tracing GC and reference-

counting GC are in fact duals of each other. They show that

all high-performance collectors, such as deferred reference

counting and generational collection, are hybrids of tracing

and reference counting. The work argues that a correct

hybridization scheme can be selected based on system

performance requirements and the expected properties of the

target application. But they do not propose a new hybrid

design. We find that tracing GC cannot discover one dead

object earlier than another dead object. It can only discover

all dead objects at the same time point – when finishing the

object graph traversal. On the contrary, reference-counting

GC can identify a dead object once its reference count drops

to zero. That means tracing GC is very suitable for batch-

mode garbage collection, while reference-counting GC is

good at real-time garbage collection. They can be hybridized

without interfering with each other.

Zhao et al [1] discover the issue of “allocation wall” in Java

applications and claim that the issue can be relieved by object

reuse. They categorize Java applications as fully scalable,

partially scalable, and hardly scalable. They find that the

partially scalable applications are also memory-intensive

applications, and frequent memory writes due to objects’

eviction from the cache are the root cause of low scalability.

They manually modify the applications to reuse objects. In

this paper, we develop an automatic object reuse mechanism.

Our data show that object reuse can not only relieve the issue

of allocation wall, but also effectively reduce the batch-mode

collection frequency, hence further improve the system

performance.

There is previous work [2, 7, 8] employing compilation-time

analysis to identify dead objects and trying to work together

with the tracing GC. Cherem and Rugina [7] propose an

algorithm to identify object variables and object fields that

hold unique references, and then instrument the programs

with explicit deallocation of individual objects. The

algorithm can only work with mark-sweep GC. The work

shows performance improvement with a mark-sweep GC.

However, mark-sweep GC itself is not widely accepted as the

default main algorithm in current advanced runtime systems

for its sub-optimal performance compared to copying or

moving GCs.

Guyer et al [4] identify dead objects by combining a

lightweight pointer analysis with liveness information that

detects the time point when short-lived objects die, then insert

calls to free function. They conduct experiments by

hybridizing their approach with mark-sweep GC and

generational GC. They conclude that mark-sweep GC can

benefit from the work, but generational GC cannot. They

claim that “it is unlikely that any technique can beat the

performance of copying generational collection on short-

lived objects.” In this paper, our work is incremental to

existing GC, and can improve the performance of copying

generational collection.

Shankar et al [5] propose an enhancement to classic escape

analysis with some novel heuristics to decide the scope of

inlining and then inline to certain level. Experimental results

 3

show that the approach can identify over four times of non-

escape objects as the classic one does, and get an average

speedup of 4.8%. The paper doesn’t clarify what GC is used

in the baseline system. We believe that, since the escape

analysis based system allocates objects on the stack, it can

work with most algorithms that manage heap objects,

including our system.

There is some work recently trying to optimize reference-

counting GC. Some approaches are proposed [3, 9] to remove

synchronization or to reduce the overhead of synchronization.

Some other approaches [3, 10, 11] are proposed to make

update operation of reference count less frequent. Harel and

Erez [12] argue that the reference-counting overhead can be

dramatically decreased and the atomicity requirement can be

eliminated. They claim that reference counting becomes a

viable option again for modern computing. Joao et al [13]

propose an approach to accelerate reference counting with

hardware support. Our paper does not mean to contribute

further optimization in reference-counting, but to take

advantage of it to enable real-time object reuse as an

increment to tracing GC. Those optimization techniques can

be applied to reduce the overhead of our system.

Blackburn and McKinley [14] explore a hybridization of

tracing and reference-counting in a generational GC, with

tracing for young objects and reference-counting for mature

objects. They can get 2% performance improvement over the

baseline GC where mature objects are managed by mark-

sweep algorithm. Our approach does not replace the existing

collection algorithm with reference-counting, but use it as an

incremental enhancement.

In this paper, we count the references of selected objects of

certain types, which we call major types. It is an important

characteristic of the application behavior. Similar concept is

discussed as “prolific types” [15] and a type-based GC is

proposed based on it. Yu et al [16] leverage the same property

and propose a GC that divides heap space into reuse-space

and non-reuse-space, and allocates objects of prolific types

into the former where the collection will be triggered more

frequently. Experimental results show that the approach

performs 2.7%~8.2% on average better than some common

tracing GCs except the generational GC. In contrast, our

approach actually triggers the collection less frequently,

because the object reuse defers the time of heap becoming

full; and our work can achieve better performance than the

generational GC.

3. Cycler design for real-time object reuse
Since tracing GC is dominant in current commercial managed

runtime systems, we expect Cycler be designed with

following conditions: 1) the existing advanced tracing GC in

the system is not replaced; 2) the existing tracing GC is

virtually not impacted; 3) the real-time object reuse is only an

incremental enhancement that can also be disabled. These

rules guide the Cycler design and its evaluation.

Real-time (also called on-the-fly in some literatures) object

reuse means to recycle the object once it is dead. As we have

discussed in last section, real-time object reuse surely cannot

happen at collection time, which recycles dead objects in

batch-mode. Real-time object reuse must happen in

application execution time (i.e., mutation time). To enable the

mutation time object reuse, we need solve three fundamental

problems:

a) identify the objects’ death timely;

b) mange the space of the dead objects; and,

c) enable dead objects space reuse in object allocation.

We describe how Cycler solves the problems in following

subsections.

3.1 Real-time objects death discovery
To identify the heap objects death in real-time, there are only

two ways: compilation-time analysis or reference-counting.

As we have discussed, compilation-time analysis has its

limitations in working with moving and/or generational GC.

In our evaluation with SPECJBB2005, SPECJVM2008 and

Dacapo, we find the compilation-time analysis can only

discover a small portion of dead objects. For example, the

String objects in SPECJBB2005 are intensively allocated and

dead very young, but most of them are associated with global

data structures and complex call graph, which makes the

compilation-time analysis difficult. Cycler chooses

reference-counting for real-time death discovery.

Different from classic reference-counting, Cycler only counts

the references of selected objects with following benefits:

1) The runtime overhead of reference-counting can be

constrained.

2) The existing advanced GC can still collect garbage as

usual. It is unaware of the existence of the reference

counting.

3) Cycler only identifies the death of the objects that are

allocated after a collection and die before the next

collection. Cycler never tries to handle the objects that

can survive a collection; instead it leaves them to the

existing tracing GC. This is a clever design choice,

because the tracing GC is good at discovering live

objects with reachability analysis, while reference-

counting is good at discovering dead objects timely. By

counting only the objects that never survive a tracing

collection, the two mechanisms work together

seamlessly.

4) Cycler only counts the references of one or two types that

are prolific. This is not only to control the runtime

overhead, but also makes the object reuse easy, because

new object can be allocated directly in the dead body of

same type object. There is no space fragmentation and it

also saves the time installing the type metadata (i.e.,

vtable pointer).

 4

To select the objects for reference-counting, we propose the

concept of major type. Major type of an application refers to

the class that satisfies following criteria:

i) Alloc_Percentage: Of all the objects allocated in the

application, the number of the objects of a major

type accounts for a significant ratio, e.g. 10% or

more;

ii) Surv_Percentage: Only a small portion of the

objects of a major type can survive a tracing

collection, e.g. 10% or less.

Expressed formally, Alloc_Percentage of a type is the ratio

of the objects allocated for the type to all the allocated objects

between two collections (after last_collect and before

curr_collect), as shown below.

Alloc_Percentage(type) = Alloc_Size(type)/ Total_Alloc

Here Alloc_Size(type) represents the number (or size) of the

allocated objects of the type between two collections;

Total_Alloc represents the number (or size) of all the

allocated objects between the two collections.

Surv_Percentage of a type is the ratio of the objects of the

type surviving a collection to all the objects of the type before

the collection:

Surv_Percentage(type) = Surv_Size(type, curr_collect) /

(Alloc_Size(type) + Surv_Size(type, last_collect))

Here Surv_Size(type, collect) represents the number (or size)

of the live objects of the type after collection collect;

For Cycler’s purpose, Alloc_Percentage is the higher the

better, and Surv_Percentage is the lower the better. Since

common applications usually spend most of the execution

time in loops, and the types of the allocated objects in those

hot loops are limited, they can be the good candidates of

major types.

To verify the major type concept, we investigate the object

behavior of the String type and char[80] type in

SPECJBB2005. As shown in Figure 1, along with the

application’s execution, the size (and number) of allocated

objects increases linearly. At the same time, the size of

allocated objects of String type and char[80] type increases

linearly as well, taking about two third of all the allocated

objects. However, the size of live objects of the two types

does not change. It keeps as a constant at only about 2M bytes

throughout the execution. That is, the alloc_percentage of

two types is 67% by size, and the surv_percentage of them

depends on the heap size. With heap size of 256M bytes, only

1.2% (by size) of them can survive a collection.

Figure 1: Object behavior of major types in SPECJBB

Major types can be obtained through profiling. With the

statistic information on allocated objects before the

collections and live objects after the collections, we can get

the type distribution of the objects allocated and the survivor

ratio of each type. To profile the major types, the application

needs to go through several collection cycles to get stable

alloc_percentage and surv_percentage. More details and data

are given in following sections.

Once the major types of an application are identified, the

runtime system can instrument the program with reference-

counting of the major types. Note it is sometimes possible for

the programmer to identify the objects’ death and manually

code to reuse them. However, it is not always feasible in case

of the applications that have complex logic. Manual reuse

also depends on the programmer to manage the dead objects

space at source code level, which is not always possible with

high-level languages. Especially when the objects are passed

as arguments to library method invocations, we find it is hard

to know if the arguments still hold valid live references, and

if the live references point to newly allocated objects in the

library.

3.2 Dead objects space management
Most commercial tracing GCs use moving collectors. The

surviving objects are moved to reduce space fragmentation

and improve data locality. The moving collection is essential

to support the bump-pointer allocation in thread-local

memory block, where the new objects are allocated in a

contiguous space by incrementing the allocation pointer

linearly.

It is easy to reuse dead objects space in mark-sweep GC

because the recycled objects can be put back into the

managed free space. But it is not easy to reuse them in a

moving GC that has bump-pointer allocation. The difficulty

lies in the fact that one cannot simply break the bump-pointer

linearity by bumping it back and forth arbitrarily. Cycler

solves the problem by not mixing up the dead objects space

management with the bump-pointer allocation space. It

0

2000

4000

6000

8000

10000

12000

Si
ze

 (
M

B
)

Execution time of SPECJBB2005

All allocated objects

Allocated objects of major types

Live objects of major types

 5

manages the dead objects separately with an in-place linked-

list. Here “in-place” means every dead object is a node of the

list, and the link pointers are stored in the dead object body,

which is no longer useful. The object header where the type

metadata is stored is untouched. So there is no extra space

needed for the reusable space management except the list

head pointer, as shown in Figure 2.

In fact, every application thread (i.e., mutator) maintains its

own lists of the dead objects, one list for one major type. By

operating with the list head, the list node insertion and

removal can be as highly efficient as the bump-pointer

allocation. When a tracing collection starts, the list head is

reset to NULL, no matter whether there are nodes in the list

or not. The tracing GC naturally recycles those left nodes.

When the collection finishes, the mutator resumes its list

maintenance by inserting newly dead objects and removing

for new object allocation. We describe the new object

allocation in next subsection.

3.3 Dead objects reuse in object allocation
Object allocation is a highly frequent operation in common

applications. The allocation sequence is critical to the system

performance. Since Cycler is intended to be incremental to

existing advanced GC, it tries to keep the object allocation as

lightweight as the original bump-pointer allocation.

Intuitively, for each allocation request, Cycler can check if

the new object has the same type (or size) with a major type,

and then remove a node from the dead-object list for reuse. If

the new object is not of a major type or there is no node

available in the list, Cycler can proceed with the original

bump-pointer allocation. However, this intuitive approach is

not efficient because it adds at least one comparison operation

in the critical allocation path. Cycler uses JIT (just-in-time

compiler) to solve the problem.

During a method compilation, the type information of every

allocation is known to the JIT. The JIT can generate

appropriate code for the allocation. If the type is a major type,

the JIT can transform the allocation to invoke the routine that

reuses dead object. Otherwise, it still uses the original bump-

pointer allocation routine. In this way, each allocation site in

the program only has once compilation-time comparison.

There is no more comparison needed at runtime. For the reuse

routine, if the dead-object list has no node available at

runtime, it falls back to the bump-pointer allocation path. In

this way, Cycler hybridizes the allocations of dead objects

reuse and original bump-pointer without any penalty.

So far we have described the design idea of Cycler. We

expect that the reference-counting effectively identify the

dead objects and Cycler effectively reuse the space for new

allocations. Then the heap space becomes full more slowly

than without Cycler, and the next collection is deferred. In the

extreme case, every new allocation request can be satisfied

by a dead object reuse. Then the tracing collection will

happen very rarely, which virtually results in a reference-

counting GC but does not have the drawbacks of a pure

reference-counting GC, because it has the flexibility to

automatically adapt between a tracing GC and a reference-

counting GC. Different GCs run best with different

applications’ behavior.

4. Detailed implementation of Cycler
To evaluate our design, we implement Cycler in Apache

Harmony [17], a product-grade open-source Java Virtual

Machine. Harmony is developed with excellent modularity

that makes it easy to research new features. The major

components relevant to our work are the JIT compiler,

garbage collector, and execution engine. Harmony

implements many well-tuned GC algorithms, such as partial-

forward, semi-space, mark-sweep, move-compact, etc. with

generational, parallel and concurrent variants. The default

configuration is a parallel generational GC with semi-space

for young objects, mark-compact for mature objects and

mark-sweep for large objects.

4.1 Cycler infrastructure
Figure 3 illustrates the features that we add into the three

Harmony components JIT compiler, execution engine, and

garbage collector.

1. At runtime, when a method is first-time invoked, the JIT

compiler is triggered to compile it into native code. It

takes the profiling results of major types to instrument

the compiled code with reference-counting (RC) for

selected objects, insert free routine when reference count

drops to zero and reuse routine for new allocations of

major type objects.

2. When the compiled method is executed at runtime, the

reference-counts are updated according to the objects

accesses. The free routine is called once a selected object

is dead, and the reuse routine is invoked once a selected

object is allocated.

3. When the free routine is called, GC inserts the dead

object into the reuse list. When the reuse routine is called,

GC removes a node from the reuse list and returns it as

the newly allocated object.

We give more descriptions in following subsections.

bump-pointer allocation pointer

dead-object list head

Figure 2: Dead objects space management

allocation direction

Object heap

 6

Figure 3: Functionality modification to original Harmony

4.2 Selective reference counting
There are already various approaches proposed by the

community on improving the performance of reference

counting. For example, Levanoni and Petrank [3] claims that

a well-designed reference-counting GC can achieve up to 2.6%

negative performance compared with tracing GC. Since

Cycler uses selective reference counting, we expect the

overhead can be even lower. However, in this paper, we have

not implemented those proposed optimizations by the

community, since it is not Cycler’s purpose to investigate

reference-counting optimizations. Cycler implements its

plain reference counting with traditional compilation

optimizations, so the runtime overhead is expected to be high.

On the other hand, if we can achieve good performance in

spite of the reference counting overhead, that would

demonstrate that the cycler approach is indeed promising.

To support reference counting, the system needs to do

following things:

1. Store the reference-counters somewhere to track the

objects’ references;

2. Add a compilation pass and design the intermediate

representation (IR) for reference-counting;

3. Insert operations at appropriate places to update the

reference counters;

4. Try to reduce the redundant reference update operations

to control the runtime overhead.

We describe them respectively in following text.

4.2.1 Reference counter storage
In Cycler, we choose to store the reference counter in the

object itself. An extra word (four bytes) is appended to the

original body of selected objects. A reference count may not

need a full word, but it is simple and keeps the object aligned.

To append an extra word has some implication in the object

space management, but it is not an issue in Harmony because

the Java object hash-code implementation already appends an

extra word when necessary.

Cycler only counts references of thread-local objects. When

there is more than one thread accessing same selected object,

it is simply discarded, i.e., its RC is not tracked any more.

This is to save the cost of atomic operations.

4.2.2 Compilation pass and IR
We add a high-level optimization pass in Harmony JIT called

ReferenceCountingPass. It basically inserts operations of

calling reference update functions. We extend Harmony

high-level IR with the operations in Table 1:

Table 1: RC operations

Opcode Operands Semantics

incRC tmp1 Increment RC of the object tmp1

decRC tmp1 Decrement RC of the object

tmp1

updSlot [tmp1], tmp2 Decrement RC of the object

whose reference is in address

tmp1, and increment RC of

the object tmp2

Operation updSlot is used when a heap slot (address tmp1) is

overwritten by a new value (reference tmp2).

4.2.3 RC operations instrumentation
The ReferenceCountingPass of Cycler scans a method twice.

In the first-pass scanning, it inserts incRC for a selected

object every time when its reference appears in the stack, and

inserts updSlot for every time a heap slot is overwritten,

except for the method argument and return value. The

reference of an argument is hold in the caller’s stack frame.

The reference of a return value also appears in the callers’

stack when current method returns. In the second-pass

scanning, ReferenceCountingPass conducts simple liveness

analysis for the objects whose RC is incremented by incRC

or updSlot, and then inserts decRC for these objects at places

right after an object reference is last-time used.

Cycler also needs to update RC for native code. Since JNI

specification defines the object manipulation interfaces, we

only need instrument following interfaces:

SetObjectFieldOffset, SetStaticObjectField, object_clone,

and array_copy.

It should be noted that Cycler also instruments the objects

whose types are parent types of any major types. The

operations will check the real types of the objects at runtime,

and only update when they are major types.

4.2.4 RC operations optimization
If without any optimization, the overhead of reference-

counting can be unacceptably high. There are two factors in

the overhead of reference-counting. One is the number of the

operations, and the other is the cost of one operation. Cycler

 JIT Compiler

Replace alloc routine with reuse

routine for selected objects

Intrustment to enable RC for

selected objects

Execution Engine

Garbage Collector

Update RC for

selected objects

Free routine

Free objects Reuse objects

Reuse routine

Linked list of freed objects

Trigger JIT compilation

Call Call

 7

uses simple optimizations while reducing the overhead

dramatically. Here we give two examples.

To reduce the number of the operations, Cycler removes

adjacent incRC and decRC pairs of same object. With this

optimization, we can reduce the update operations for the

return expressions, and for the assignment expressions to the

variables of multi-definition.

To reduce the cost of single operation, Cycler inlines the

operations. Harmony has a technique that allows the VM

developers to write VM helper routines in Java code, then

Harmony JIT can inline the routines at the invocation sites.

We write both the reference-count update operations and the

free/reuse routines in Java code. They are inlined and

optimized by the JIT.

4.3 Reusing the space of dead objects
As discussed previously, Cycler organizes the dead objects

into a reuse list. Every time when a new allocation request of

the major type comes, the head node of the list is removed

and returned. The object header does not need to be refilled

for type metadata, but the object body is zeroed.

To support the space reuse, we extend the opcode decRC to

decAndtestRC, so that every time when the RC falls to zero,

the object is recycled. In that case, this operation continues

the decrement and test operations recursively with the

recycled objects’ field references, if they have major types.

We also need a dedicated testRC opcode, because the

redundancy optimizations might remove both incRC and

decRC pairs in a method. But we still need to check the

reference-count when it returns from a method call.

To support the object allocation with reuse, we introduce

allocType for major type object allocations.

Table 2 shows all the finally introduced opcodes by Cycler.

Table 2: All new operations Cycler introduces

Opcode Operands Semantics

incRC tmp1 Increment RC of object tmp1

decAndtestRC tmp1 Decrement RC of object tmp1, test

if it falls to 0; If true, recycle it and

proceed recursively

testRC tmp1 Test if RC of object tmp1 falls to

0, and if so, recycle it and proceed

recursively

updSlot [tmp1],

tmp2

Decrement RC of object whose

reference is in address tmp1, test if

its RC falls to 0, and if so, recycle

it and proceed recursively;

increment RC of object tmp2

allocType cls1, tmp1 Allocate a new object of class cls1

by trying reuse first. If no dead

object available, falls back to

bump-pointer allocation. Let tmp1

be the returned object.

5. Experimental evaluations and analyses
We evaluate our implementation of Cycler in Apache

Harmony. In this section we describe our experimental

evaluations and analyses.

5.1 Evaluation setting
We use Harmony default configuration for our evaluation

since it is well-tuned [18, 19]. The default GC is a parallel

generational GC that partitions the heap into three spaces,

NOS (Nurse Object Space), MOS (Major Object Space), and

LOS (Large Object Space). NOS is for new object allocation,

and LOS is for large object management. MOS is for the

surviving objects from NOS. By default, NOS is managed

with semi-space algorithm, MOS with mark-compact

algorithm, and LOS with mark-sweep algorithm. The sizes of

spaces can adaptively adjust according to the application’s

behavior dynamically. We specify 256M bytes as the default

heap size unless otherwise stated.

We use well-known benchmarks SPECJBB2005,

SPECJVM2008 and Dacapo (2006 release) for the

evaluations. We run the applications with single benchmark

thread (e.g., one warehouse with SPECJBB2005) and

multiple benchmark threads. Without explicitly stated, the

data are with the single thread mode. The computer platform

has Intel Core2 Quad CPU with 2.83GHz frequency and

3.23GB RAM.

5.2 Major types of the benchmarks
We collect the major type data for all the applications of the

three benchmarks. The data shows that almost all the

applications have types that take significant ratio in total

allocations. For example, among the 27 applications, 10 have

a respective type that takes more than 50% of the total

allocation size; another 8 have more than 20% of the total

allocation size. In average of all the 27 applications, major

types take 47% of the total allocation size.

We also collect how fast the major types become steady in

the course of application execution for all applications. The

data shows that the pre-steady period takes less than 5% of

total execution for one third applications. This means that

profiling is feasible to identify the major types. There are a

few applications that do not have steady major type from

collection to collection. For those applications, full-run

profiling might be needed.

Here in this paper, due to length limitation, we only show the

data of hree applications as the representatives, i.e.,

SPECJBB2005, SPECJVM2008.derby, and Dacapo.chart in

Table 3 and

Table 4. We choose them because they are most allocation-

intensive applications in the benchmark suites, i.e. they

allocate most number of major type objects per unit time.

 8

Table 3: Major types of the benchmarks

Benchmark Major Types Alloc

Perc.

(size)

Alloc

Perc.

(num.)

Surv

Perc.

JBB2005 char[80] 54% 19% ~0%

java.lang.String 13% 35% 10%

derby java.math.BigDecimal 33% 26% ~0%

java.math.BigInteger 28% 25% ~0%

chart java.lang.String 35% 42% ~0%

Table 4: Time needed to get steady major types

Benchmark Pre-steady

collection cycles

Total collection

cycles

JBB2005 8 1977

derby 45 704

chart 1 22

5.3 Overhead of reference-counting
We measure the overhead of reference-counting in Cycler. To

characterize the reference-counting overhead, we measure

the application performance with basic selective RC and

optimized selective RC while disabling dead objects

recycling and reusing. The results are shown in Table 5.

Table 5: Time overhead of RC

Benchmark Instrumented types
Basic RC

overhead

Optim. RC

overhead

JBB2005
char[80]

35.8％ 7.3％
java.lang.String

derby java.math.BigDecimal 19.5% 6.5%

chart java.lang.String 28.9% 13.0%

We can see that the simple optimizations can dramatically

reduce the overhead of basic reference counting. On the other

hand, the overhead is still too high. We expect to apply the

recent work in the community in next step to further reduce

the overhead.

It should be noted that we allocate extra four bytes for each

instrumented object, so reference counting not only brings

time cost, but also space cost. We expect the overhead can be

amortized by the space reusing. The estimated space cost is

given in Table 6.

Table 6: Space overhead of RC

Benchmark JBB2005 derby chart

Overhead 3.4% 3.3% 5.8%

5.4 Benefits of object reuse in single-thread mode
We measure the performance of Cycler by enabling dead

objects recycling and reusing. Table 7 shows the results with

single-thread mode.

Table 7: Benefits of real-time object reuse

Benchmark
Perf.

Improvement

Collection cycles

reduction

JBB2005 6.9％ 64.2％

Derby 5.2% 31.4%

chart 3.0% 33.3%

Here the performance improvement is computed against the

selective RC implementation in last subsection. Collection

cycles are the counts of garbage collections. We can see that

object reuse does bring benefits, and the collection cycles

have been reduced dramatically.

To understand where the benefits come from, we collect data

on the object reuse ratios, given in Table 8.

Table 8: Object reuse ratios

Benchma

rk
Major type

Reuse Ratio

(size) of major

type objects

Reuse ratio

(size) of all

objects

JBB200

5

char[80] ~100% 54%

String 71% 9%

derby BigDecimal ~100% 33%

chart String 87.5% 31%

“Reuse ratio of major type objects” means that, of all the

allocation requests of major type, the ratio of those satisfied

by reusing dead objects. The ideal value is close to 100%, i.e.

bump-pointer allocation is virtually unused for major type

allocations. “Reuse ratio of all objects” is the ratio of reusing

in all the object allocation requests. We can see that

SPECJBB2005 has more than 60% of object allocations can

reuse dead objects. Lots of object reuse effectively defer the

triggering of next collection cycle, hence reducing the

collection cost.

Besides the benefit in space usage, object reuse also helps to

improve the memory performance by reducing cache misses

and bus bandwidth consumption. Table 9 shows the results

we collect with Intel Vtune [20] performance analyzer.

Table 9: Memory performance of object reuse

Benchmark

Reduction in

memory bandwidth

utilization

Reduction in

L2 cache miss

rate

JBB2005 33.3% 25.5%

derby 18.2 21.1%

chart 16.7% 12.8%

Although we get obvious performance gain with object reuse

compared to the selected reference-counting implementation.

The single-thread absolute performance compared to that of

without Cycler is still lower, because the object reuse benefits

cannot mask all the RC overhead. There are two reasons:

firstly our reference-counting implementation is

straightforward without applying the state-of-the-art

optimizations; secondly the applications in single-thread

 9

mode are not seriously memory-intensive because the

memory system of the platform is designed to sustain

multiple-thread computation on multiple cores. Assuming the

RC overhead can be controlled to be 2.6%, all the

applications can have absolute performance gain even with

single-thread mode. Next we investigate the benefits of object

reuse with multiple-thread mode.

5.5 Benefits of object reuse in multi-thread mode
We collect the data in Table 10 for SPECJBB2005 running

with four warehouses and derby with four benchmark threads.

Chart is excluded in the experiment because it is a single-

thread application. Memory performance data is also shown

in Here the “Absolute performance gain” shows the

improvement of Cycler over Harmony default tracing GC.

We expect to get more improvement with more sophisticated

RC optimizations.

Table 11. We choose four threads because the platform has

four cores, thus the data are supposed to be the peak numbers.

Table 10: Benefits with multi-threading applications

Benchmark
Overhead

of RC

Benefit

of reuse

Absolute

perf.

gain

Reduced

collection

cycles

JBB2005 6.1% 9.0% 2.3% 19.3%

derby 4.2% 11.7% 7.0% 20.9%

Here the “Absolute performance gain” shows the

improvement of Cycler over Harmony default tracing GC.

We expect to get more improvement with more sophisticated

RC optimizations.

Table 11: Memory performance with multi-threading

Benchmark

Reduction in

memory bandwidth

utilization

Reduction in

L2 cache

miss rate

JBB2005 7.1% 5.9%

Derby 8.6% 9.5%

As can be seen from the data, compared with single-thread

mode, the multi-thread mode gets less reductions in

collection cycles, memory bandwidth utilization, and L2

cache miss rate, but Cycler brings much more significant

benefits, which indicates that these three factors impact the

performance of multi-threading applications more than that

of single-threading applications.

The last experiment evaluates whether Cycler can bring

benefit with more heap size and more cores. We run

SPECJBB2005 and derby on a machine with 4 Intel

Dunnington CPUs (24 2.66 GHz cores) and 32GB RAM,

with four heap size configurations: 256MB, 512MB, 786MB,

and 1024MB. The data are the formal scores reported by the

benchmarks.

Figure 4 : Scalability under different heap size

(JBB2005)

Figure 5: Scalability under different heap size (derby)

As can be seen from the figures, Cycler achieves better

scalability under across all the configurations of heap size. In

average, Cycler has 3.2% ~ 6.2% better performance for

SPECJBB2005 and derby. Besides, we observe that as heap

size increases, the advantage of Cycler is more significant.

The reason is that for larger heap size, the benchmark

performance is more limited by those three factors mentioned

previously. Actually Cycler achieves better scalabilities with

SPECJBB2005 and derby with more cores than the default

GC in our measurement.

6. Summary and future work
In this paper, we investigate the concept of major type, and

propose a scheme Cycler to leverage the property by reusing

the dead objects of major types in real-time. The novelty of

Cycler is that, it does not interfere with the existing advanced

tracing GC. We find that tracing GC cannot discover any

dead object earlier than another dead object. It can only

discover all dead objects at the same time point, i.e., when

0

1

2

3

256 512 768 1024

N
o

rm
al

iz
e

d
 S

co
re

Heap Size (MB)

Peak Performance of
SPEJBB2005

Original Tracing GC

Original Tracing GC + Object Reuse

0

1

2

3

4

256 512 768 1024

N
o

rm
al

iz
e

d
 S

co
re

Heap Size (MB)

Peak Performance of derby

Original Tracing GC

Original Tracing GC + Object Reuse

 10

finishing the object graph traversal. In contrast to that,

reference-counting GC can identify a dead object once its

reference count drops to zero. That means tracing GC is very

suitable for batch-mode garbage collection, while reference-

counting GC is good at real-time garbage collection. Cycler

hybridizes these two GCs without interfering with each other.

Cycler only counts the references of the major type objects,

thus the runtime overhead is smaller than a classic reference-

counting implementation. At the same time, the major type

objects have low surviving ratio between two collections,

which make highly efficient object reuse possible. In our

evaluation with SPECJBB2005, SPECJVM2008, and

Dacapo, Cycler can get absolute performance improvement

with three allocation intensive applications with

straightforward RC implementation. We expect that more

sophisticated reference-counting implementation can bring

more benefit and help to scale the applications with more

threads. That is our next step work.

We also need to investigate Cycler with more applications.

One major task is to understand if object reuse can benefit

less allocation-intensive applications. We also want to

combine Cycler with compilation-time analysis to identify

the object death, and then Cycler does not need to track the

reference counts of all the major type objects. The RC

overhead can be further reduced. In this way, a synthesis of

compilation-time analysis, reference-counting, and tracing

collection can be established that leverage the best results of

the memory management community.

References
[1] Y. Zhao, et al., "Allocation wall: a limiting factor of Java

applications on emerging multi-core platforms,"

presented at the Proceeding of the 24th ACM SIGPLAN

conference on Object oriented programming systems

languages and applications, Orlando, Florida, USA, 2009.

[2] S. Z. Guyer, et al., "Free-Me: a static analysis for

automatic individual object reclamation," SIGPLAN Not.,

vol. 41, pp. 364-375, 2006.

[3] Y. Levanoni and E. Petrank, "An on-the-fly reference-

counting garbage collector for java," ACM Trans.

Program. Lang. Syst., vol. 28, pp. 1-69, 2006.

[4] Y. G. Park and B. Goldberg, "Escape analysis on lists,"

SIGPLAN Not., vol. 27, pp. 116-127, 1992.

[5] P. R. Wilson, "Uniprocessor Garbage Collection

Techniques," presented at the Proceedings of the

International Workshop on Memory Management, 1992.

[6] D. F. Bacon, et al., "A unified theory of garbage

collection," presented at the Proceedings of the 19th

annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications,

Vancouver, BC, Canada, 2004.

[7] S. Cherem and R. Rugina, "Uniqueness inference for

compile-time object deallocation," presented at the

Proceedings of the 6th international symposium on

Memory management, Montreal, Quebec, Canada, 2007.

[8] A. Shankar, et al., "Jolt: lightweight dynamic analysis and

removal of object churn," presented at the Proceedings of

the 23rd ACM SIGPLAN conference on Object-oriented

programming systems languages and applications,

Nashville, TN, USA, 2008.

[9] A. Gidenstam, et al., "Efficient and Reliable Lock-Free

Memory Reclamation Based on Reference Counting,"

Parallel and Distributed Systems, IEEE Transactions on,

vol. 20, pp. 1173-1187, 2009.

[10] D. F. Bacon, et al., "Java without the coffee breaks: a

nonintrusive multiprocessor garbage collector," SIGPLAN

Not., vol. 36, pp. 92-103, 2001.

[11] P. G. Joisha, "Compiler optimizations for nondeferred

reference: counting garbage collection," presented at the

Proceedings of the 5th international symposium on

Memory management, Ottawa, Ontario, Canada, 2006.

[12] H. Paz and E. Petrank, "Using prefetching to improve

reference-counting garbage collectors," presented at the

Proceedings of the 16th international conference on

Compiler construction, Braga, Portugal, 2007.

[13] J. A. Joao, et al., "Flexible reference-counting-based

hardware acceleration for garbage collection," presented

at the Proceedings of the 36th annual international

symposium on Computer architecture, Austin, TX, USA,

2009.

[14] S. M. Blackburn and K. S. McKinley, "Ulterior reference

counting: fast garbage collection without a long wait,"

SIGPLAN Not., vol. 38, pp. 344-358, 2003.

[15] Y. Shuf, et al., "Exploiting prolific types for memory

management and optimizations," presented at the

Proceedings of the 29th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages,

Portland, Oregon, 2002.

[16] Z. C. H. Yu, et al., "Object co-location and memory reuse

for Java programs," ACM Trans. Archit. Code Optim., vol.

4, pp. 1-36, 2008.

[17] Apache Harmony. Available: http://harmony.apache.org/

[18] X.-F. Li, et al., "A Fully Parallel LISP2 Compactor with

Preservation of the Sliding Properties," in Languages and

Compilers for Parallel Computing: 21th International

Workshop, LCPC 2008, Edmonton, Canada, July 31 -

August 2, 2008, Revised Selected Papers, ed: Springer-

Verlag, 2008, pp. 264-278.

[19] W. Ming and L. Xiao-Feng, "Task-pushing: a Scalable

Parallel GC Marking Algorithm without Synchronization

Operations," in Parallel and Distributed Processing

Symposium, 2007. IPDPS 2007. IEEE International, 2007,

pp. 1-10.

[20] Intel® VTune. Available: http://software.intel.com/en-

us/intel-vtune/

http://harmony.apache.org/
http://software.intel.com/en-us/intel-vtune/
http://software.intel.com/en-us/intel-vtune/

