Virtual Reuse Distance Analysis of
SPECjvm2008 Data Locality

Xiaoming Gu
Intel China Research Center
xiaoming@cs.rochester.edu

Xiao-Feng Li
Intel China Research Center
xiao.feng.li@intel.com

Bugi Cheng
Intel China Research Center
bu.qi.cheng@intel.com

Eric Huang
Intel China Research Center
eric.huang@intel.com

ABSTRACT

Reuse distance analysis has been proved promising in eval-
uating and predicting data locality for programs written in
Fortran or C/C++. But its effect has not been examined
for applications in managed runtime environments, where
there is no concept of memory address. For this reason, tra-
ditional reuse distance analysis based on memory addresses
is not directly applicable to these applications.

This paper presents the Virtual Reuse Distance Analy-
sis (VIRDA), which resolves the difficulties associated with
runtime environments and provides insights into the high-
level locality in dynamic applications. ViRDA addresses the
problem caused by managed runtime artifacts, garbage col-
lection in particular, by using virtual data identities, ob-
tained through a standard profiling interface, to capture in-
herent data locality. The effectiveness of ViRDA is evalu-
ated using a subset of the SPECjvm2008 benchmark suite.
The new analysis reveals the reuse distance signatures of
these programs and helps to explain the cause of excessive
cache misses. It also predicts locality for large inputs based
on training analysis of several small inputs. The prediction
error is no more than 6% for the 4 scimark workloads.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—optimiza-
tion, runtime environments; C.4 [Computer Systems Or-
ganization]: Performance of Systems—measurement tech-
niques

General Terms

Measurement, Performance

Keywords

Data locality, Reuse distance, Managed runtime, SPECjvm2008

Permission to make digital or hard copies of all or part of this work for

1. INTRODUCTION

A lasting phenomenon in computing technology is the ever
growing gap between CPU and memory, which imposes a
heavy penalty at cache misses and gives rise to one of the
most severe performance bottlenecks. At the same time,
applications based on managed runtime systems are gaining
popularity due to their programmability, portability, and
availability. To minimize the memory penalty for these dy-
namic applications, we need ways to analyze their data lo-
cality.

Reuse distance [16, 7, 18, 11], as a precise quantitative
metric for modeling locality, has been used extensively. How-
ever, previously existing tools typically deal with programs
written in native languages such as Fortran or C/C++. Ap-
plications written in these languages are compiled directly to
binaries. Since memory objects do not change location after
they are allocated, there is direct correspondence between
an object and its memory address. This property does not
hold in applications executing in managed runtime environ-
ments such as Java, C#, and Java Script, where data could
be relocated due to garbage collection (GC). In this scenario,
an object can potentially reside in one memory location be-
fore a GC and another location after the GC. Furthermore,
the activities to a virtual machine (VM) incur a large num-
ber of memory accesses that are not directly related to the
actions of applications. For example consider the effect of
a just-in-time compiler (JIT). These artifacts make it dif-
ficult to analyze the locality of dynamic applications using
the traditional approach. A new mechanism is needed for
these applications.

This paper presents a new mechanism called Virtual Reuse
Distance Analysis (VIRDA). VIRDA works with virtual data
identities, which removes the impact of VM artifacts, es-
pecially GC. By observing memory accesses virtually us-
ing symbolic identities instead of actual addresses, we can
capture the inherent data locality of an application. Given
the application and its input parameters, its locality pro-
file is largely machine-independent and VM-independent.
In other words, the locality information is profile-once-use-
everywhere, which follows the write-once-run-everywhere spirit
of virtual-machine applications.

personal or classroom use is granted without fee provided that copies are The paper shows the use of VIRDA on a carefully selected
not made or distributed for profit or commercial advantage and that copies subset of SPECjvm2008 [6] programs. The tool measures the
bear this notice and the full citation on the first page. To copy otherwise, 10 reuse signatures (explained in Section 2.2), detects working

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
PPPJ'09,August 27-28, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-598-7 ...$10.00.

set sizes, and helps to analyze long-distance reuses. In ad-
dition, it is used to predict reuse signatures for large data
inputs based on training analysis of the reuse signatures from

executions using small inputs.

The rest of this paper is organized as followings. Section 2
introduces the basic definitions and related work. Section 3
explains the detailed design of ViIRDA. Section 4 presents
a series of locality profiles for the selected SPECjvm2008
benchmarks. Finally, Section 5 discusses the limitations of
ViRDA and presents the future work, and Section 6 sum-
marizes the paper.

2. BACKGROUND AND RELATED WORK

The memory wall [17], the growing gap between CPU and
memory, is one of the most severe performance bottlenecks.
Data locality has been under active study for decades for
ameliorating the effect of the memory bottleneck.

2.1 Datalocality

There are two aspects of data locality:

e Temporal locality—the currently accessed data element
will be accessed again in the near future;

e Spatial locality—the data elements adjacent to the
currently accessed element will be accessed in the near
future.

Techniques such as computation reordering [10, 14] and data
reorganization [9, 26, 19] are commonly used to improve data
locality. Typically the benefits of optimizations are evalu-
ated by real performance measurements, which is dependent
of hardware and operating system (including tuning param-
eters). A metric such as reuse distance to model data lo-
cality may help to separate application-specific factors from
machine- and system-specific effects.

2.2 Reusedistance and reuse signature

The reuse distance (RD) for a memory access is the num-
ber of distinctive data elements between this access and the
previous access to the same data element. It was first de-
fined in 1970 by Mattson et al. as one of the stack distances
in their seminal study of locality for virtual memory sys-
tems [16]. An example is shown in Table 1. Intuitively,
reuse distance analysis simulates a fully associative cache
with least recently used (LRU) replacement policy and infi-
nite capacity. If a data element is never accessed before, the
reuse distance of the first access is infinite. In practice, an
access with a shorter reuse distance is more likely to result
in a cache hit.

Access trace a b cla|b|bflal]c
Reuse distance | co | oo |0 | 2120|112

Table 1: Example reuse distances

To represent all reuse distances in a data access trace, the
reuse signature was introduced, which is the distribution of
all reuse distances [11]. The reuse signature for the example
in Table 1 is shown in Figure 1, assuming that each data
element occupies one byte. Reuse distances are grouped
into bins with widths in base two logarithmic scale. For a
reuse signature with IV bins, bin 0 is for distance 0, bin 1 for
distance 1, and bin n (2 < n < N — 3) for reuse distances
between [2"71,2" — 1], bin N — 2 for finite reuse distances
no less than 2V ~2 and the last bin for infinite distance (the
data is never accessed before). Locality optimizations aim

183

to shorten long distance reuses, and their improvements can
be measured by comparing the reuse signatures before and
after the optimization.

g
S Q4
[} o] o]
[]
@
o _|
S @
Q
@
S o _|
o «
=
b
° [e] [¢]
(]
o 9
[
8
c
(9]
c o
& \ T T T
0 1 2 3

Reuse distance (bytes in log 2 scale)

Figure 1: An example reuse signature

2.3 Rdated Work

The time complexity of the algorithm by Mattson et al.
is O(NM) and its space complexity is O(M) since it simply
simulated a fully associative LRU cache [16], where N is the
number of memory accesses and M is the number of data el-
ements. Bennet and Kruskal computed reuse distance with a
partial sum hierarchy to achieve time complexity O(NlogN)
and space complexity O(N) [7]. Olken improved the work by
using an AVL tree and its time and space complexities were
lowered to O(NlogM) and O(M) respectively [18]. Ding
and Zhong invented an approximation algorithm based on
a scale tree (a splay tree [24] with dynamic compression)
and achieved time complexity of O(NloglogM) and space
complexity of O(loglogM) [11]. Our tool uses two of the
algorithms: the Olken algorithm with a splay tree [18] and
the approximate algorithm with a scale tree [11].

Time distance (or access distance [12]) is the number of ac-
cesses between two accesses to the same data element with-
out concerning with distinctiveness. For example, the time
distance for the last access in Table 1 is 4. Compared with
reuse distance, time distance is much easier to compute.
Shen et al. used time distance to approximate reuse dis-
tance [21, 20]. Beyls and D’Hollander applied reservoir sam-
pling [15] in conjuction with time distance [8]. Zhong and
Chang proposed a history-preserving representative sam-
pling for accelerating reuse distance analysis [25].

Ding and Zhong proposed to predict locality based on
reuse signatures for large inputs using the results from small
inputs [11]. Shen et al. used reuse distance as a basic met-
ric to detect locality phases at run time and mark their
boundaries in source code [22]. With reuse distance anal-
ysis, Fang et al. found out a set of critical instruction ac-
counting for most of the L2 cache misses in both integer and
floating-point programs [12]. Beyls and D’Hollander built a
tool named Suggestions for Locality Optimizations (SLO)[8],
which could find code with temporal locality problems for
native applications. Gu et al. studied spatial locality based
on the changes of reuse distances when doubling the granu-
larity of data blocks [13].

Shiv et al. conducted a thorough study of SPECjvm2008

on Intel platforms using hardware event statistics [23]. But
the locality behavior is not characterized.

All prior work with reuse distance is for native applica-
tions, where data accesses can be identified by memory ad-
dresses. However, these mechanisms do not work well with
managed runtime systems. There are interfering memory
references by the runtime system internals, i.e., the VM but
mostly irrelevant or not directly related to the locality pro-
file of the application itself. To make things worse, copying-
based garbage collectors move objects around in memory
frequently. If memory addresses are used, the same object
could be regarded as multiple different data items. Next we
describe our solution to these two problems, a solution based
on virtual data identities.

3. VIRTUAL REUSE DISTANCE ANALYSIS

Symbol-based analysis has two significant advantages com-
pared with memory address based analysis:

e It only captures the data accesses made by applica-
tions;

e It is not affected by data relocation due to GC.

With virtual object identity, application locality profile
can be captured because only data accesses of the applica-
tion are considered by the analysis. Local variables are allo-
cated in registers or on stack, and they typically have very
short reuse distances that result in cache hits, making them
uninteresting for locality analysis. Hence, our focus is on
heap data accesses. We call this symbol-level reuse distance
analysis as Virtual Reuse Distance Analysis, or ViRDA for
short.

In the rest of this paper, we present ViRDA in the context
of the Java virtual machine, although the technique can be
generally applied to other managed runtime systems.

3.1 Virtual Dataldentity
In ViRDA, heap objects are categorized as follows:

e Class field—Class ID (class signature combined with
class loader) and field ID are used to represent a class
field in Figure 2(a). The field ID is the same as field
index in Java class file.

e Instance field—Instance ID and field ID are used to
represent an instance field. The instance ID equals to
the hash code returned by System.identityHashCode(),
which remains unchanged throughout the lifetime of an
instance. See Figure 2(b) for details.

e Array element—Array ID and element ID are used to
represent an array element in Figure 2(c). An array is
just a special object and it has a hash code as its ID.
The element ID is the element index.

Using identity traces from data access profiling, we can
study the symbol-level locality for an application. In Fig-
ure 3, we show an example using virtual reuse distance with
code snippets in Figure 3(a) and Figure 3(b), and the corre-
sponding resulted access trace in Figure 3(c). The reuse dis-
tance computation is done by a reuse distance analyzer dis-
cussed in Section 3.2.2. Here virtual reuse distance (ViRD)
is measured in bytes. As shown in Figure 3, ViRD is aug-
mented from RD with data size information. For instance,

184

Class ID Field ID

(a) Class field

Field ID Instance 1D

(b) Instance field

Array ID | Element ID

(c) Array element

Figure 2: The design of virtual data identity

the second access to b.ctr has two data elements of 4 bytes
referenced in between, then the ViRD for this access is
444 = 8. We will use ViRD instead of RD in the rest
of this paper, but we simply refer to it as reuse distance
(RD).

class Apple() {} Basket b = new Basket();
class Peach() {}

class Basket() { b.p = oPeachl;

long ctr = 0;
Apple a = null; b.etr = 1;
Peach p = null;
1 b.a = oApplel;
b.ctr = 2;
Peach oPeachl = new Peach();
Peach oPeach2 = Peach();
each oPeach new Peach(); ba = oApple2:

0
0
Apple oApplel = new Apple();
0

Apple oApple2 = new Apple(); b.p = oPeach2;

(a) Data initialization (b) Data access

Access

‘ trace b.ctr | b.a b.p | b.p | b.ctr | b.a | b.ctr b.a | b.p ‘
RD 00 00 00 0 2 2 1 1
Data | g 4| 4| 4 8 4 8 4 | 4
size
ViRD S [SS) S 0 8 12 4 8 12

=3

)

(c) Virtual reuse distances for the accesses in (

Figure 3: Example virtual reuse distances

The example above assumes that each field is mapped to
a distinctive cache block. (Here a field refers to a field of a
class, an instance, or an element of an array.) In practice,
a field typically takes less than a cache block, and multiple
fields may occupy the same cache block. To reflect this, we
use “virtual allocation” for each field and assign the field a
data block ID as follows:

e Assume each object is allocated starting from a cache
block aligned location, where the data block ID is
recorded as 0.

e Allocate each field of the object in the order of decla-
ration in the current cache block; use the next cache
block if the remaining space in current block is inade-
quate; record the cache block number as its data block
ID.

e Add data block ID to every field identity as shown in
Figure 4 below.

The reuse distance analysis based on identities with data
block ID shows block temporal locality, which includes block-
internal spatial locality. In comparison, the analysis based
on the identity design in Figure 2 is for pure temporal local-

ity.

Class ID |Data block ID |Field size

(a) Class field

Instance ID |Data block ID |Field size

(b) Instance field

Data block ID |Element size

Array ID

(c) Array element

Figure 4: Virtual data identity with data block ID

3.2 A JVMTI-based Implementation

With the data identity design, ViRDA is implemented us-
ing the JVM Tool Interface (JVMTI) [4] for Java applica-
tions. It consists of two parts:

e Front end—profiling the trace of virtual data access;

e Back end—computing reuse distances.

3.2.1 The Front End

ViRDA catches data accesses of Java applications using
the standard JVMTI [4]. JVMTI is an event-based pro-
gramming API for instrumenting and profiling Java appli-
cations.! The virtual data identities are constructed in the
formats shown in Figure 2 and Figure 4. The identities are
put into a dedicated buffer, which transfers profiling data
from the front end to the back end.

3.2.2 The Back End

The back end is a reuse distance analyzer to process the
data buffer when it is full. It computes reuse distance for
each virtual access in the buffer. When buffer processing
is finished, it waits for JVMTI event handlers to fill the
buffer again. Currently, there are two analyzers available.
The exact analysis is based on a splay tree with time com-
plexity O(NlogM) and space complexity O(M) and the ap-
proximate one is based on a scale tree with time complexity
O(NloglogM) and space complexity O(logM). The approx-
imate analyzer is much faster than the precise one, so we
use the faster analyzer when analyzing larger applications.
The accurate analyzer is used for working set prediction,
which gives clear component information even for bins with
very short reuse distances. A code sketch of the accurate
analyzer is shown in Figure 7. The splay tree as a binary
tree organized by the access order and a field of tree node
records the sub-tree size including the node itself. The algo-
rithm for scale tree has a similar framework except that it
uses dynamic compactions to integrate adjacent nodes into a
single node when measurement precision is not affected [11].

After a reuse distance is calculated, it is recorded in the
corresponding distance bin. After profiling, the reuse signa-
ture is plotted using some external tools. Besides reuse sig-
natures, hot methods, classes and fields with long distances
are reported with additional bookkeeping, which helps to
identify locality problems in the source code. Developers
and performance tuners can benefit from such information.

1Some necessary JVMTI extensions are added in order to
obtain all data identities. For instance, obtaining array ac-
cesses, getting array hash code, getting element index, and
getting field offset.

185

Take a virtual access from the data buffer;

Looking for this virtual identity node in the splay tree {

//never accessed before

Add it to the splay tree at the most recently
access position;

Report an infinite reuse distance;

} else {

Splay the node to root;

Report the number of nodes of the sub-tree rooted
by its right child as the reuse distance;

Move it to the most recently accessed position;

}

Figure 5: The algorithm for the precise reuse dis-
tance analyzer

4. EVALUATION WITH SPECJVM 2008

In this section, we apply ViRDA to a subset of SPECjvm2008

benchmarks selected based on L2 cache misses per thousand
instructions (MPKI).

4.1 Experimental environment

We collected L2 cache MPKI for the 21 non-startup work-
loads using VTune 9.0 [3] on a 32-bit Windows XP Profes-
sional desktop equipped with a 2.83GHz Intel Core 2 Quad
Q9550 CPU and 4G DDR2 400MHz memory. The deployed
JVM is Apache Harmony [2] with option -Xem:server, -
Xms256m and -Xmx256m. For scimark.fft.large and sci-
mark.lu.large, the options about heap size are changed to
-Xms512m and -Xmx512m to prevent OutOfMemory excep-
tion. From Table 2, we can see the 4 scimark benchmarks [5]
with large inputs have the most bandwidth demands fol-
lowed by derby, compiler.compiler, compiler.sunflow and se-
rial.

[Workload [L2 cache MPKI |
scimark.fft.large 42.16
scimark.lu.large 19.18

scimark.sparse.large 18.64
scimark.sor.large 7.92
derby 4.65
compiler.compiler 2.06
compiler.sunflow 1.69
serial 1.23

Table 2: The top 8 workloads in SPECjvm2008 with
the highest L2 cache MPKI

To discover inherent locality profiles, we use ViRDA to
analyze the workloads in a single Java thread setting.? The
workloads are compiled with a basic JIT using -Xem:jet since
our focus is on workloads themselves instead of the deployed
JVM. The data block size is 64 bytes as a popular config-
uration. For scimark workloads, the precise reuse distance
analyzer with a splay tree is used to return precise results
even for very short distances for pure temporal locality un-
less indicated explicitly. For other workloads, the approx-
imate analyzer with a scale tree is used to measure block
temporal locality. The precision of approximation is set to
99.9%.

2The default setting for SPECjvm2008 workloads is that the
number of running threads equals to the number of available
cores.

4.2 Slow-down Factor and Component-based
Prediction

The main challenge of ViRDA is the significant slowdown.
(More details in Section 4.3.7.) But we could use small in-
puts to predict locality signatures for large inputs where
there are inherent locality patterns in an application. This
component-based prediction is done manually, where a com-
ponent is a group of adjacent bins with non-trivial percent-
age of total accesses forming a peak in a reuse signature. By
changing inputs such as doubling array sizes, we may see
some changing patterns for the components (size and resi-
dent bin) in the reuse signatures. While not all programs
are predictable, the captured patterns can be used to do
prediction for some programs, especially the scientific com-
puting applications, as presented by Ding and Zhong [11].
The predictions are verified by running ViRDA with the
predicted input sets. We crosscheck the results by examin-
ing the source code to ensure the correctness of the locality
profile.

4.3 Reusedistance study for workloads
4.3.1 Scimark.fft.large

This workload is a fast Fourier transformation implemen-
tation in Java that works on a one-dimensional double array.
The reuse signatures are shown in Figure 6. Three small ar-
ray sizes are tried to infer the changing pattern. For the
small inputs, we can see that the first two components are
fixed with different array sizes. The third component floats
right one bin consistently when the array size is doubled.
The predictions of reuse distance signature for DEFAULT
and LARGE inputs are drawn in dashed lines. For LARGE
input, the third component is in bin 25, which means that
those accesses cannot fit a fully associative cache smaller
than 16MB. To check the prediction, we use the fast ap-
proximation algorithm to verify. Because the approximate
algorithm might not be accurate for short distances, we com-
pare only long distances no less than 1KB with the metric

Z |bin_predict(i) — bin_actual (7)|
i=11

2 % mm(z bin_predict(i), Z bin_actual(i)) 7

=11 =11

Error =

where bin_predict(i) and bin_actual(i) are the sizes for bin 4
from prediction and in practice respectively. The prediction
Error for LARGE is 6.0%.

The hot method information shows that about 91.7% of
long-distance reuses of the third component happen in method
transform_internal(). Further investigation finds that most
of those data accesses happen in a 3-level loop nest in that
method. The loop nest can be simplified into the code in Fig-
ure 7(a). The step used is doubled from 2 exponentially in
the outmost loop and the accesses of datafi+j] are the cause
of long reuse distances when the step size is very large. For-
tunately there is a loop interchange opportunity for this loop
nest.The transformed loop nest is in Figure 7(b). Spatial lo-
cality is improved by the optimization depicted by the block
temporal reuse signatures in Figure 8—some long-distance
reuses are reduced to bin 7 after the optimization.

We tested the original and optimized code to crosscheck
ViRDA results on a real machine with Intel Q9550, where a
single thread can use up to 6MB of L2 cache. Figure 9(a)
shows a significant distinction of MPKI starts from 8MB

186

g o v
< S Array sizes
4 S e 2us o <
@ i 2716 - SMALL i
(0] o _| " 277 h
g ® i 2/20 - DEFAULT "
< I |re 222-LarcE 'y
T o I o
g «7¢ [o
5 \ {1 L
o \ [, “
2 S| P b
g Lo y
5 © 1 ©00° | <><><><><‘><><><><><‘><><><><”><‘><><><><>r,‘z-<,,><><><><‘><>
o
0 5 10 15 20 25 30

Reuse distance (bytes in log 2 scale)

Figure 6: Actual and predicted pure temporal reuse
signatures for scimark.fft

for(int step=2;step<N;step*=2) {
for(int j=0;j<step;j++) {
double sum = 0;
for(int i=0;i<dataSize;i+=step) {
sum += datal[i+j];
data[i+j] += sum;

}

(a) Original code

for(int step=2;step<N;step*=2) {
double sum_array[] = new doublel[step];
for(int i=0;i<dataSize;i+=step) {
for(int j=0;j<step;j++) {
sum_array[j] += datali+j];
datal[i+j] += sum_arrayl[jl;

}

(b) Optimized code

Figure 7: Improving the locality of scimark.fft by
loop interchange

(23 in X-axis) for the array size. This is consistent with the
hardware. When the array is smaller than 6MB, it can be
contained in L2 cache and there is almost no cache miss.
When the array size continues to grow, L2 cache misses in-
crease sharply with the original loop, but the increase is
much slower with the optimized loop. In Figure 9(b), we
can see the performance is improved correspondingly.

The block temporal reuse signatures in Figure 8 and Fig-
ure 10 explain the results in Figure 9. The reuse signatures
for the original code have about 2% accesses for each bin in
the middle range (bin 8 to bin 18 in Figure 10(a) and bin
8 to bin 19 in Figure 10(b)). When the array size is dou-
bled, the rightmost component (10% in size) at bin 20 moves
one bin right (from bin 19 in Figure 8(a) to bin 20 in Fig-
ure 8(b)) and the leftmost two components stay where they
are. Each middle bin still carries about 2% of total access
but the number of these bins is increased by 1. If the ar-
ray size is doubled repeatedly, the rightmost component and
some of the middle bins on the right will eventually result
in cache misses. At that time each doubling causes about
2% of total accesses to become cache misses, which matches

<
;S
%)’ 8 1 s —e— Original
3 . Optimized
o |
o < |
o o}
Q
@© o _|
= (32
8
9 o
B 7
S
s 9
< /o)
7] | 7\
2 o 4 000000 R222RRABRARRA H000O0000000
& T T T T T T T
0 5 10 15 20 25 30
Reuse distance (bytes in log 2 scale)
(a) Array length=65536
<
;S
%)’ 8 1 a —e— Original
3 7 Optimized
o |
Q \ H
© o _|
= (32
8
9 o
B 7
S
g S
% Q
4\
% o - 000000 2008RQQACAARRA HLOOOOLOOLOL
a T T T T T T

10 15 20

Reuse distance (bytes in log 2 scale)

(b) Array length=131072

Figure 8: Block temporal reuse signatures showing
the effect of loop interchange in scimark.fft

to linear MPKI changes for the original code in Figure 9(a).
After loop interchange, the bins in the middle range are al-
most empty in Figure 10 and the corresponding MPKI curve
has a much gentler slope. The rightmost component is the
only major contributor of cache misses. The differences in
reuse signatures unveil a significant improvement on data
locality.

4.3.2 Scimark.lu.large

This workload is a Java implementation of LU matrix fac-
torization. It works on a two-dimensional double array. The
reuse signatures for different small array sizes are in Fig-
ure 11. The first component is fixed but the second compo-
nent moves to the right by 1 bin and the third component
moves to the right by 2 bins when the array size is doubled.
The predicted reuse signatures for DEFAULT and almost
LARGE (LARGE array size=2048) inputs are the dashed
lines. The prediction Error for LARGE is 1.7%. The third
component for almost LARGE cannot be contained in a fully
associative cache smaller than 16MB. A large number of
cache misses are expected to occur at run time. However,
due to hardware prefetching, the real performance is bet-
ter than the predicted because the accesses demonstrate a
streaming pattern and the L2 cache MPKI is not as high as
that of scimark.fft.large. The study of components floating-

187

o Array sizes —o— Original]
8 | 19-smALL Optimized /
S 23 - DEFAULT o
™ | 25-1ARGE
e o
=
o 2 7
e o o
[S] —
ISt
¢ 9
Y8 o+
S o
o /
S | o Jo! o) o)
g T T T T T T T T
19 20 21 22 23 24 25 26

Array sizes (bytes in log 2 scale)

(a) L2 cache MPKI improvement

o

S

Ire) Array sizes —e— Original °
- 19 - SMALL Optimized
@) 23 - DEFAULT
2 S 25 - LARGE
£ O -
= S
@ —
5
£ o

[=}
g 8
1%
Q
& o
] —

o)
o 4 s A ——O—
T T T T T T T T
19 20 21 22 23 24 25 26

Array sizes (bytes in log 2 scale)

(b) Performance improvement

Figure 9: Improvement due to loop interchange in
scimark. fft

right with SMALL inputs shows that about 97.7% of the
second component and 94.4% of the third component come
from the method called factor(), in which a 3-level loop nest
resides.

4.3.3 Scimark.sparse.large

This workload is about sparse matrix multiplication that
works on several one-dimensional double or integer arrays.
Because the provided configurations for SMALL and DE-
FAULT are not proportional to the one for LARGE, we do
not conduct tests using the SMALL and DEFAULT data
sets. Instead, we use other small array sizes proportional
to LARGE to infer the changing patterns shown in Fig-
ure 12. The first component is fixed but the second com-
ponent moves to the right by 1 bin when the array size
doubled. The reuse signature for LARGE input set is pre-
dicted in dashed lines with Error 1.7%. The second compo-
nent in LARGE could not be contained in a cache smaller
than 32MB. The second component mostly comes from the
method matmult(), the hottest spot of the program with a
3-level loop nest.

©00000000009

N7|

o —o
T T T T T

11 16 21 6 11 16 21

$00000000009

Percentage of total accesses (%)
4

Percentage of total accesses (%)
4
!

\
|
[
|
|
A
T

o -0

Reuse distance (bytes in log 2 scale) Reuse distance (bytes in log 2 scale)

(a) Array length=65536 (b) Array length=131072

Figure 10: Local views for middle bins in Figure 8

<
X
< 8 Array sizes
3 —o— 1254125
2 b 250250 - SMALL
o 9 w 500*500
g @ :\' o <,.> 1000*1000 ~ DEFAULT
< { ‘\ n -G 2000%2000 - Almost LARGE
< ["
5 & I "o f
b i - i
© I - / S
[| . !
o 9 () . L
il [h [0 \
S | &. oAl ko o/' \
I i . ; AT
S o 12000 ©9000600622260060608«
o I I I I I
0 5 10 15 20

Reuse distance (bytes in log 2 scale)

Figure 11: Actual and predicted pure
reuse signatures for scimark.lu

temporal

S
< E inputs
2 —o— 312562500
o 6250 125000 o x
0 o 12500 250000 i
§ o) -5 200000 4000000 - LARGE h
o
g = ¥
8 o | i o
u— o I [
s} A L
9] — i\ P
g & B
- o _| |]
g - | o
5 O — BB EE IR BERIXBXIIBEBORIRZR
& \ T T T T T T
0 5 10 15 20 25 30
Reuse distance (bytes in log 2 scale)
Figure 12: Actual and predicted pure temporal

reuse signatures for scimark.sparse

4.3.4 Scimark.sor.large

This workload is a Jacobi successive over-relaxation im-
plementation in Java that works on a two-dimensional dou-
ble array. Reuse signatures for different small array sizes
are in Figure 13. When array size is doubled, the first

188

two components are fixed but the third component moves
to the right by 1 bin and the fourth component moves to
the right by 2 bins. The reuse signatures for DEFAULT and
almost LARGE (LARGE array size=2048%2048) inputs are
predicted in dashed lines. The prediction Error for LARGE
is 3.0%. The fourth component could not be contained in a
cache smaller than 16MB. The third and fourth components
with SMALL input both come from ezecute() with a 3-level
loop nest.

40

Array sizes
—e— 125*125
250*250 - SMALL
500*500
1000*1000 - DEFAULT
2000*2000 - Almost LARGE

30
|

| ' o
| '
/ [y '

\ .
000?0000?il<><><><‘>0<><><>f,‘3<><><><><‘><>

Percentage of total accesses (%)
20
|

10 15 20 25 30

Reuse distance (bytes in log 2 scale)

Figure 13: Actual and predicted pure temporal
reuse signatures for scimark.sor

Let’s take a look at why some components are fixed but
some move to the right 1 or 2 bins when the array size is
doubled. In Figure 14, the fixed components come from
short constant reuse distances, e.g. the ones between A[i/[j]
at iteration (X, I,J) and Afi/fj-1] at iteration (X, I,J + 1).
The floating-right components come from input-dependent
reuse distances, e.g. the ones between A[i][j-1] of iteration
(X,1,J+1) and Afi-1][j] of iteration (X,I + 1,J) move to
the right by 1 bin and the ones between A [i-1][j] of iteration
(X,I+1,J) and Afi+1][j] of iteration (X + 1,1 —1,J) move
to the right by 2 bins.

for (int x=0;x<repeatNum;x++)
for (int i=1;i<N-1;i++)
for (int j=1;j<N-1;j++)
ATi1[3] = (A[i+1][j1+A[i-1]1[j]
+A[i] [j+1]+A[i]1 [j-11)/4

Figure 14: An example illustrating locality compo-
nents with fixed or changing reuse distances

4.3.5 Derby

This workload is an open source relational database [1].
When running with a single thread, setting it up consumes
most of time because only 1 transaction is processed. This
is very different from real scenarios. To make results more
meaningful, the setting up of the database is skipped and
the number of transactions is increased to 10 to focus on
transaction processing. This workload is analyzed using the
approximate algorithm based on a scale tree.

In Figure 15, the non-trivial long-reuse component at bin
23-28 accounts for more than 4.8% of total accesses. Table 3
shows that the top 5 hottest methods for this component
are all constructors for BigDecimal and Biglnteger. They

together account for about 65% of this component. The-
oretically most accesses in a constructor have infinite dis-
tances because the newly created instance is never touched
before. The reason might be the duplicated hash codes,
which prevents our mechanism from differentiating between
two different objects. It is possible that two distinctive ob-
jects have the same hash code. That is, the component at
bins 23-28 should really be merged to the last bin, since they
are caused by constructors. ViRDA relies on the assumption
that object hash codes are unique. Although the VM strives
to make hash codes different for distinctive objects, it can
wrap around if the number of objects is too large.

<
S 9 4
%]
Q o
@
o _|
e |\
3
— [e]
g o |
=] N
S
b
° \
()
g 7 .
P~ .o
& o
000040
§ o oo ©°0000000000000°%0000°
& T T T T T T

o -0
(&3]

10 15 20 25 30

Reuse distance (bytes in log 2 scale)

Figure 15: Block temporal reuse signatures for derby
(transaction processing only)

‘ Method | Method Class Contribution ‘
signature percentage
<init> JnV Ljava/math/BigDecimal 34.1%
<init> (IT[H)V Ljava/math/Biglnteger 14.7%
<init> ([CID)V Ljava/math/BigDecimal 6.7%
<init> IV Ljava/math/BigInteger 5.3%
.. (Ljava/math/ S . . o
<init> BigInteger;T)V Ljava/math/BigDecimal 4.1%

Table 3: Top 5 hot methods for the locality compo-
nent at bins 23-28 in Derby

4.3.6 Compiler.compiler and compiler.sunflow

These two workloads are both about javac. The difference
is the input sets, which are the source files of javac itself and
the ones of another workload sunflow. Results confirm that
they have very similar data locality. Hence only results of
compiler.compiler are presented here.

Javac compiles all source files of itself in compiler.compiler
and there is no connection between any two compilations.
BoundKind.java is the smallest file and Lower.java is the
largest one, which are selected for our analysis. The reuse
signature for this whole workload (running with all source
files) should be with a shape between the two investigated
signatures.

Figure 16 shows that the reuse distance of the component
from bin 11 to bin 17 is lengthened with a larger source
file. But the effect is much less than the cases for the 4 sci-
mark workloads. Table 4 and Table 5 list the details of this
component. In Table 4, the column for method signature is

189

omitted because of no overloading. The code and data dis-
tribution for this component is flat, which is very different
from scimark workloads.

40

—e— Boundkind.java 1KB
Lower.java 119KB

o

30

20
|

LOOOOOOOOLC

T I
25 30

Percentage of total accesses (%)

Reuse distances (bytes in log 2 scale)

Figure 16: Block temporal reuse signatures for com-
piler.compiler

| Method | Class Contribution
percentage

lookup Lcom /sun/tools/javac/code/Scope; 7.6%

nonEmpty Lcom/sun/tools/javac/util/List; 6.4%
Lcom/sun/tools/javac/code/

lookup Scope$ImportScope; 5.4%

Lcom/sun/tools/javac/code/ o

next Scope$ImportScope$ImportEntry; 3.4%

Table 4: Top 4 hot methods for the component at
bins 11-17 with Lower.java for compiler.compiler

| Class ‘ Field ‘ Contribution
percentage
Lcom/sun/tools/ .
javac/code/Symbol; kind 14.0%
Lcom/sun/tools/javac/util/List; tail 10.0%
Lcom/sun/tools/javac/code/Type; tag 8.3%
Lcom/sun/tools/javac/]
code/Scope$Entry; sym 8.0%

Table 5: Top 4 hot class & fields for the component
at bins 11-17 with Lower.java for compiler.compiler

The hottest method, lookup(), is related to an Entry hash
table. The lookup operation checks field sym of Entry in-
stances. Since the number of entries of the hash table is
fixed at 16, it is highly possible that bad hashing happens
here—too many elements are mapped to the same table en-
try. In the source code, we found a comment saying “the
adaptive expanding turned off due to some bug”. We tried
turning it on anyway but didn’t encounter any errors. The
contribution from this method is reduced to 4.4%. From the
data view, the contribution from instance field sym of class
Entry is reduced to 2.5%. And the actual performance for
the whole workload is improved by about 2%, although the
improvement may be unstable.

4.3.7 Serial

This workload performs 16 kinds of serializations that are
studied separately using the approximate algorithm based

on scale tree. Some statistics for each sub-workload are in
Table 6. It shows VIRDA with about 250x slowdown for all
these sub-workloads. In results, only 3 of them (Array, Ar-
rayList and Payload) have non-trivial part (> 1%) of reuse
distances in bins greater than 10, which are plotted in Fig-
ure 17. The three sub-workloads are with longer access trace
and/or larger data set. The component for Array moves to
the right by 1 bin if the array size is doubled. It is consistent
with the previous findings in scimark workloads.

Method Contribution

Method R Class
signature percentage
e (Ljava/lang/ Ljava/security/ o
equals Object;)Z CodeSource 59.1%
. ILjava/lan . .
regionMatches (StJring/;H)Zg/ Ljava/lang/String; 39.4%

Table 7: Top 2 hot methods for the component at
bin 14 for Array of serial

. Contribution
| Class ‘ Field ‘ percentage
Lcom/sun/tools/ .
= n Dat e Brof javac/code/Symbol; kind 14.0%
Sub-workload ccoss trace ava sev sue ro /C)fc | Lcom/sun/tools/javac/util/List; tail 10.0%
length (Byte) elapsed time - —— - -
Lcom/sun/tools/javac/code/Type; tag 8.3%

Array. 1.1e+9 4.1e+5 39m46s/8422ms Lcom/sun/tools/javac,/ 5 0%
ArrayList 5.9e+8 6.8e+6 26m4s/5157ms codc/Scopc$Entry; sym U7
ByteArray 1.0e+8 3.9e+5 6m37s/1031ms

ClassRef 2.5e+7 3.9e+5 4m2s/937
Clzzzv;itc}fggs et et m?2s/937ms Table 8: Top 2 hot classes & fields for the component
DateOnly 2:5e47 3.9e+5 4m5s/969ms at bin 14 for Array of serial
DomainObject 6.5e+7 4.0e+5 5m21s/1234ms
Exception
Reference 3.9e+7 4.0e+5 4m265/1046ms Method MCthOd Class Contribution
Externalizable 2.5e+7 3.9e+5 4mls/922ms signature percentage
HugeData 2.5e+7 4.7e+5 4m21s/1109ms . (I)Ljava/lang/ . .
Parent 1.2e+8 4.3e+5 7m37s/1515ms toString String; LJava/lang/Intcgcr, 49.7%
Payload 1.1e4+8 1.7e4+7 9m?28s/5516ms . (ILjava/lang/ . .
: rionMatches . Ljava/le St H 39.4
Proxy 33017 30075 6m/3006ms reslonMatehes 1 = gtring:11)7 java/lang/String; %
ReadResolve 2.Te+7 3.9e+5 4m6s/922ms
hSimple : 2.5e+7 3.9e+5 ‘11““135//1063ms Table 9: Top 2 hot methods for the component at
‘WithBigDecima 4.9e+7 3.9e+5 5mbs/1141ms . .
WithFinalField 25017 39015 Tmds/938ms bin 14 about Payload of serial

Table 6: The access length, data set size and elapsed
time for each sub-workload of serial

g

% 8 = Sub-workload
0] o —e— Array

a ArrayList
2 UH? — —— Payload
5]

[+

& o |

=] —

=

—

]

S o

g +
g AN

S o 1202466060666 000606660
o I T T T I

11 16 21 26 31

Reuse distance (bytes in log 2 scale)

Figure 17: Block temporal reuse signatures for Ar-
ray, ArrayList and Payload in serial

The details for the non-infinite components for Array and
Payload are listed in Table 7, Table 8 and Table 9. (The
results for ArrayList are omitted since they are very similar
to those of Array.) The distributions are all very concen-
trated. Besides the listed hot classes and fields, character
arrays accounted for about 40% or 100% for Array and Pay-
load respectively.

5. LIMITATIONSAND FUTURE WORK

The main concern for ViRDA is its time cost. Time dis-
tance [21, 20] or sampling techniques [15, 25] could alleviate
this problem by reducing the measurement time by an or-
der of magnitude. We may make analysis even faster by
combining these methods [8].

Another concern is hash code conflicts—the same identity
hash code for different objects. In JVM, the hash code of
an object usually equals to the memory address when it is
first used. If too many objects are allocated, conflicts may
happen as the case in Derby. We could improve the hash
code generation mechanism by replacing the high-end bits
of hash code with the number of garbage collections that
have happened since only low-end bits of memory address
are different in nursery space.

The connection between ViRDA and traditional reuse dis-
tance analysis is also interesting. Some investigations com-
bining the two kinds of different results on reuse distance
need to be done.

6. SUMMARY

Reuse distance analysis has been proven effective in ana-
lyzing program data locality. It is especially useful to iden-
tify program code that causes poor data locality. In prior
efforts, memory addresses were used while working with pro-
grams written in languages like Fortran or C/C++. In man-
aged run time environments, however, simply using memory
addresses could result in inaccurate analysis due to the in-
terference of runtime support such as data movement. We
propose ViRDA that identifies program data using symbolic
information in reuse distance analysis for runtime applica-
tions. ViRDA only profiles accesses directly issued by ap-
plications, bypassing runtime internal data accesses and the
data relocation effect of GC. Furthermore, ViRDA is built

on top of standard runtime profiling interface, which makes
it independent of underlying runtime implementations.
ViRDA is used in locality analysis for 8 workloads in
SPECjvm2008 that have the worst locality. Due to the lo-
cality nature for applications, we can use small input sets in
practical profiling and project collected reuse signatures for

large input sets with small errors. We expect the SPECjvm2008

locality profiles by VIRDA could help the community to bet-
ter understand the workloads behavior and optimize Java
virtual machine systems for improved performance.

Acknowledgment

We wish to thank Chen Ding in University of Rochester for
his insightful technical suggestions and kindly help on pa-
per revision, and the anonymous reviewers for their valuable
comments.

References

[1] Apache Derby. http://db.apache.org/derby.

[2] The Apache Software Foundation, Apache Harmony.
http://harmony.apache.org.

Intel VTune.
http://software.intel.com/en-us/intel-vtune.
JVM Tool Interface.

8]
[4]

[5]
[6]

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti.

SciMark 2.0. http://math.nist.gov/scimark?2.
Standard Performance Evaluation Corporation,
SPECjvm2008. http://www.spec.org/jvm2008.

B. T. Bennet and V. J. Kruskal. Lru stack processing.
IBM Journal of Research and Development,
19(4):353-357, 1975.

K. Beyls and E. H. D’Hollander. Discovery of
locality-improving refractorings by reuse path
analysis. In HPCC, pages 220-229, 2006.

C. Ding and K. Kennedy. Improving cache
performance in dynamic applications through data
and computation reorganization at run time. In PLDI,
pages 229-241, 1999.

C. Ding and K. Kennedy. Improving effective
bandwidth through compiler enhancement of global
cache reuse. Journal of Parallel and Distributed
Computing, 64(1):108-134, 2004.

C. Ding and Y. Zhong. Predicting whole-program
locality through reuse distance analysis. In PLDI,
pages 245-257, 2003.

C. Fang, S. Carr, S. Onder, and Z. Wang. Instruction
based memory distance analysis and its application. In
IEEFE PACT, pages 27-37, 2005.

X. Gu, I. Christopher, T. Bai, C. Zhang, and C. Ding.
A component model of spatial locality. In ISMM,
pages 99-108, 2009.

M. S. Lam and M. E. Wolf. A data locality optimizing
algorithm (with retrospective). In Best of PLDI, pages
442-459, 1991.

K.-H. Li. Reservoir-sampling algorithms of time
complexity O(n(1 + log(N/n))). ACM Transactions
on Mathematical Software (TOMS), 20(4):481-493,
December 1994.

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger. Evaluation techniques for storage hierarchies.
IBM Systems Journal, 9(2), 1970.

[7]

8]

[9]

(10]

191

[17] S. A. McKee. Reflections on the memory wall. In
Conf. Computing Frontiers, page 162, 2004.

F. Olken. Efficient methods for calculating the success
function of fixed space replacement policies. Technical
Report LBL-12370, Lawrence Berkeley Laboratory,
1981.

X. Shen, Y. Gao, C. Ding, and R. Archambault.
Lightweight reference affinity analysis. In ICS, pages
131-140, 2005.

X. Shen and J. Shaw. Scalable implementation of
efficient locality approximation. In LCPC, pages
202-216, 2008.

X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality
approximation using time. In POPL, pages 55-61,
2007.

X. Shen, Y. Zhong, and C. Ding. Locality phase
prediction. In ASPLOS, pages 165-176, 2004.

K. Shiv, K. Chow, Y. Wang, and D. Petrochenko.
Specjvm2008 performance characterization. In SPEC
Benchmark Workshop, pages 17-35, 2009.

D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652-686, 1985.

Y. Zhong and W. Chang. Sampling-based program
locality approximation. In ISMM, pages 91-100, 2008.
Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array
regrouping and structure splitting using
whole-program reference affinity. In PLDI, pages
255-266, 2004.

(18]

(19]

20]

(21]

