
Software Value Prediction for Speculative Parallel Threaded Computations

Xiao-Feng Li Zhao-Hui Du Qing-Yu Zhao Tin-Fook Ngai *

Intel China Research Center, Beijing, China

* Microprocessor Research Labs, Santa Clara, California

Intel Corporation

Abstract

Despite recent advances in high performance

microprocessor architecture and compilation

technologies, many integer applications are still hard

to speedup their performance. Value prediction and

thread-level speculation are two promising techniques

to discover and exploit more parallelism in

applications. In this paper, we show that value

prediction plays an important role in speculative

parallel threaded computations. In particular, with

good compilation supports, value prediction can be

achieved in software without expensive hardware

support. We describe this software value prediction

technique and how the compiler helps to determine

critical and predictable values using selective value

profiling. Experiments were performed and showed

that selective value profiling is effective and the

software value prediction technique boosts the average

performance of five speculative parallel threaded

SPEC CPU2000 benchmarks by 14.3%, with the

average speedup improved from 6.5% to 21.7%.

1 Introduction

Despite recent advances in high-performance

microprocessor architecture and compilation

technologies, many integer applications are still hard

to speedup their performance. Value prediction and

thread level speculation are two promising techniques

to discover and exploit more parallelism in

applications. These two techniques are orthogonal

and can benefit from each other. Value prediction

helps to break dependences that are otherwise difficult

to avoid while speculative parallel threading provides

more opportunities for speculation and coarser grain

parallelism.

1.1 Value prediction

Value prediction has been shown to be able to provide

more instruction level parallelism (ILP) by breaking

data dependence [LWS96, Gab96]. The idea is

straightforward: Normally, a flow of execution can

proceed only when all data it needs are ready. But if

the needed values can be predicted before they are

really produced, then the execution can continue

speculatively without stalls. The speculation results

are committed when the predicted values are later

proved correct; otherwise, the execution must be

recovered and redirected to the correct flow that uses

the correct values.

1.2 Speculative parallel threading (SPT)

architecture and computation

While value prediction is helpful in advancing ILP

exploitation, it is also essential for thread-level

parallelism (TLP).

Along with the increasing number of transistors,

current processor technologies with superscalar or

VLIW can hardly bring scaled performance

improvement further if limited to only fine-grained

ILP. More parallelism is available at a coarser grain

level, i.e. thread level. By executing piece of code

ahead of time in a separate thread of control,

application performance could be improved. If a

thread is executed before its control dependences and

data dependences are resolved, it is a speculative

thread. The speculation results cannot be committed

before all its assumed dependences are proved correct.

This requires mechanisms to detect dependence

violation and to recover from misspeculation.

1.2.1 Our speculative parallel threading

execution model

In this study, we use a two-processor system to run

speculative parallel threaded computations. One

processor is designated as the master processor and

the other is designated as the speculative processor.

The master processor always executes in normal

(non-speculative) mode. Each processor has its own

register file and program state, while both processors

share the same memory hierarchy (L1-cache can be

separate but always coherent).

We have a special fork instruction. When the master

thread executes the fork instruction, it forks a

speculative thread that starts running at the specified

address in the fork instruction on the speculative

processor with the current thread context. The master

thread continues execution in parallel with the

speculative thread until it reaches the same start

First Value-Prediction Workshop June 7, 2003 18

address of the speculative thread. At that point, the

master thread checks for any dependence violation.

Depending on the results, the speculative results of the

speculative thread are either committed or recovered

from misspeculation. There is no register

communication or synchronization between the master

thread and the speculative thread during the parallel

execution period.

There are two commit and recovery modes in our SPT

execution model. The first mode is the replay mode

where the master thread replays the speculated

instruction one by one. The correct speculatively

executed results are committed directly.

Misspeculated instructions are re-executed and

committed in the normal way. The second mode is the

fast-commit mode where the master thread checks if

there is any dependence violation when it reaches the

speculation start point. If there is no dependence

violation, all changes made by the speculative thread

are committed at once; otherwise, it falls back to the

replay mode.

1.3 Motivation for software value prediction

The dependences between master thread and

speculative thread are critical for speculation. It is

desirable if we can predict the dependences with

reasonable accuracy. Value prediction appears an

important means to achieve this. Since we are

compiling and generating speculative parallel threaded

code, we are particularly interested in value prediction

techniques that do not require expensive hardware

supports. We propose a software value prediction

technique that can be efficient and targeted well for

speculative parallel threaded compilations.

Our software value prediction is supported by our

two-pass compilation process and uses selective value

profiling. Different from other proposed prediction

techniques [NGS99, WF97, SS98, TF01, LA00,

FJL+98, FJL+98II], our technique lets the compiler to

analyze the predictability and implements specific

value predictor at the right place where the predicted

values will be used. The value predicted for a

speculative thread is pre-computed by the master

thread before the speculative thread is forked. The

value is communicated to the speculative thread

automatically via either registers or memory.

In this software value prediction work, we use a cost

model to select which variables to predict, and to

guarantee the benefits of the value prediction.

Selective value profiling plays a key role in the

process, it helps to reduce the profiling overhead, and

at the same time finds out the pattern used in the value

prediction.

1.4 Paper organization

Next section we will discuss related work. In Section

3, we will give a brief introduction about our SPT

(Speculative Parallel Threading) compiler framework,

including the two-pass compilation process and the

cost-driven SPT code transformation. We will then

describe our software value prediction mechanism in

the following two sections: Section 4 describes

selective value profiling and Section 5 describes

software value prediction and the associated

implementation details. Then we present experiment

results in section 6. Section 7 concludes the paper.

2 Related work

Lipasti, Wilkerson and Shen showed that load-value

prediction was a promising technique to exceed data-

flow limit in exploiting instruction level parallelism

[LWS96]. Other work showed that the value

prediction mechanism could be applied to not only

load instructions, but also nearly all value-generated

instructions [Gab96].

Most of current value prediction mechanisms studied

in literature [NGS99, WF97, SS98, TF01] used special

hardware to decide prediction and to predict values.

There are four basic kinds of hardware value

predictors: Last-value [LWS96], Constant-stride
[GG98], Context-based [SS97], and Hybrid [WF97]

predictors. The difficulty in hardware value prediction

is how to find out whether an instruction is

appropriate for prediction at runtime in acceptable

time while keeping the hardware cost reasonable. In

order to alleviate part of the problem, some work

required compiler and/or profiling support such that

only values that had high prediction confidence were

predicted [SS98, GM97].

Fu et al. [FJL+98II] proposed a software-only value

prediction approach that does not require any

prediction hardware, and can run on existing

microprocessors. It utilized branch instructions to

support speculation: When the verification code found

a wrong prediction, the control flow jumped to the

recovery code. The prediction codes were statically

inserted into the executables and were executed

regardless whether the prediction was correct or if it

was needed. Without special speculation hardware

support, the execution context of the original code

could be polluted by the prediction code. This

approach showed limited performance improvement.

Fu et al. [FJL+98] also proposed to add explicit value

prediction instructions in the instruction set

architecture (ISA) for their value speculation

scheduling approach.

June 7, 2003 First Value-Prediction Workshop 19

Compiler-controlled value prediction optimization

proposed by Larson and Austin [LA00] achieved

better performance than previous pure software

approach. It employed branch predictor for confidence

estimation and used the branch prediction accuracy to

resolve the value prediction accuracy problem.

Zhai et al. [ZCS+02] proposed compiler optimization

for scalar value communication in speculative parallel

threaded computation. Their compiler inserted

synchronizations in critical forwarding paths in order

to avoid speculation failure. Different from their

approach, we do not insert synchronization to

communicate correct values between threads. Instead,

we try to pre-compute and predict the values for

speculative thread, so that there is no extra

synchronization overhead.

3 SPT compiler framework

Our work is based on the SPT compiler framework we

developed on top of Intel’s Open Research Compiler

(ORC) [ORC]. The SPT compiler compiles a

sequential program, selects and transforms appropriate

loops into SPT loops, and generates the final

speculative parallel threaded code. Two key features

in this SPT compiler framework are its two-pass

compilation process and cost-driven SPT loop

selection and optimization. The software value

prediction technique described in this paper takes

advantage of this framework and is applied directly in

the final SPT transformation. This section gives a

general overview of the SPT compiler framework.

3.1 Two-pass compilation

Our SPT compilation is performed in two passes. The

first pass considers every loop at each loop-nested

level as an SPT loop candidate, and for each loop

candidate it attempts aggressive code reordering to

determine if the loop is appropriate for speculative

parallel threaded execution. The results are output to

a decision file that is then read back by the compiler in

the second pass compilation. Based on the decision of

the first pass compilation, the second pass identifies

the selected loops, performs the actual SPT loop code

reordering and transformation, and then generates the

final code.

3.2 Cost-driven loop transformation

The SPT compiler uses a cost-driven model to guide

the SPT loop transformation. For each candidate loop,

it computes misspeculation cost of the loop and

performs code reordering within the loop body until it

achieves the minimal misspeculation cost with

acceptable fork preparation work (i.e., the maximum

sequential work needed before forking a speculative

thread).

A loop is made a SPT loop by inserting a fork

instruction in the loop body. The placement of the fork

instruction effectively partitions the loop body into

two regions: a pre-fork region before the fork

instruction and a post-fork region after it.

Figure 1 shows a scenario that a master thread

executing iteration i forks a speculative thread

executing iteration i+1. It also shows the

corresponding pre-fork and post-fork regions, and the

possible cross-iteration dependences between the

regions.

Because the computation in the pre-fork region in

iteration i is executed before fork, all its results are

available to the speculative thread. Any cross-iteration

dependence that originates from these results is

always satisfied and never causes misspeculation in

the speculative thread. This is why we also call the

pre-fork region the fork-preparation region.

On the other hand, the computation in the post-fork

region in iteration i is executed in parallel with the

speculative thread. Because there is neither register

communication nor synchronization between the

master thread and the speculative thread, the

speculative thread may read and use obsolete values

existing before the forking. Any cross-iteration

dependence originated from the post-fork region can

be violated and causes misspeculation in the

speculative thread. All computation depending on

these cross-iteration dependences then needs to be re-

executed later in order to recover from the

misspeculation.

During SPT compilation, the compiler constructs a

dependence graph of the loop body. Each node in the

graph represents a separate statement of the loop

body. For each data dependence or control

dependence between two statements, an edge is added

between the corresponding nodes. This graph is called

SPT-graph.

Any statement in the post-fork region that is the

source of a cross-iteration dependence is a violation

candidate. The conditional violation cost (CVC) of a

violation candidate is the estimated number of

Figure 1: Scenario of SPT execution

iteration i iteration i+1

pre-fork

region

post-fork

region

pre-fork

region

post-fork

region

First Value-Prediction Workshop June 7, 2003 20

instructions in the speculative thread that should be re-

executed in order to recover from misspeculation,

assuming the cross-iteration dependence is violated.

There is a dependence probability (DP) associated

with each cross-iteration dependence. It gives the

probability that the dependence really occurs between

two successive iterations. This dependence probability

can be derived from control flow probabilities and

alias probabilities, but we will not discuss the details

here because of the space limit. The misspeculation

penalty (MSP) of a violation candidate is therefore DP

times CVC, assuming DP and CVC are independent.

Misspeculation cost (MSC) of a given partition is the

sum of the MSPs of all violation candidates in the

post-fork region without counting a statement twice in

the same re-execution instance.

The cost-driven SPT transformation partitions the loop

in such a way that the misspeculation cost of the

resulted partition is minimal, subjected to the

constraint that the size of pre-fork region is acceptably

small with respect to the loop body size. (The pre-fork

region can be viewed as the sequential component of

the parallel execution that limits the parallelism.)

Optimal partitioning is achieved by moving the

violation candidates that have high misspeculation

penalty from post-fork region into the pre-fork region.

As long as the pre-fork region size is acceptable, such

code reordering reduces the misspeculation cost and

improves the application performance.

4 Selective value profiling

As we said in Section 3, SPT compiler framework, the

SPT loop transformation tries to find a loop partition

that has minimal misspeculation cost and acceptable

pre-fork region size. But in many cases, the resulted

partition cannot satisfy all constraints at the same

time: Either it has too big misspeculation cost or the

size of its pre-fork region is too large.

For example, we find a violation candidate has

unacceptably high misspeculation penalty. In order to

move the statement into the pre-fork region, all

statements that it depends on (which is called

depending set) need to be moved too. This may make

the size of the pre-fork region too large to comply

with the partition criterion.

We find software value prediction (SVP) an effective

approach to alleviate the above problem. Actually, we

believe that software value prediction is essential for

speculative parallel threaded computations. The basic

idea is: By generating additional code in pre-fork

region that predicts a key variable's value for the

speculative thread, the critical dependence introduced

by the variable’s definition is effectively replaced by

the dependence on the predicted value, which might

result in more parallelism if the prediction is highly

accurate. We will describe our approach in details in

this and the following sections.

4.1 Critical Dependences

In order to minimize the misspeculation cost, we need

to find out the critical dependences. In our SPT-graph,

a critical dependence refers to a cross-iteration data

dependence which has both unacceptably high

misspeculation penalty and a too big depending set to

be put into the pre-fork region.

To find out the critical dependences, according to our

definition, we need the following steps:

1. Collect those dependences whose depending

set size is larger than a threshold;

2. Estimate the conditional violation cost of

each dependence and its dependence

probability; then compute the misspeculation

penalty MSP of the dependence;

3. Ignore those dependences whose MSP is less

than a threshold;

4. Sort the remaining dependences in the

descending order of their MSP values.

At the end, we get all the critical dependences sorted

according to their criticalities.

4.2 Value-predicted dependence

The identification of critical dependences helps to

determine the most beneficial candidates for value

prediction. We want to replace the original critical

dependences with the ones based on the predicted

value, which are called value-predicted dependences.

A value-predicted dependence will be violated when

the predicted value is mispredicted, which incurs

misprediction penalty (MPP). The penalty depends on

how often the prediction is wrong, and how much the

misprediction costs. The former one is measured by

misprediction probability (MP), which is the ratio of

the number of incorrect predictions to the total number

of predictions made. Given the value prediction
accuracy (PA), we have MP = 1-PA. Conditional

misprediction cost (CMC) is the cost incurred by a

wrong prediction. CMC is basically the same as the

original conditional violation cost of the replaced

critical dependence. Like the misspeculation penalty,

misprediction penalty is the product of conditional

misprediction cost and misprediction probability, i.e.,

MPP = CMC * MP, assuming CMC and MP are

independent.

June 7, 2003 First Value-Prediction Workshop 21

4.3 Value profiling and pattern matching

After we have identified the critical dependences for a

loop, we need to determine which variable definitions

are highly predictable therefore we can apply value

prediction to break the dependences. Only when the

misprediction penalty is smaller than the

corresponding misspeculation penalty, is the value

prediction useful. If CMC equals to CVC, it means the

misprediction probability should be clearly lower than

the dependence probability in order to justify a

dependence replacement. In other words, we must find

out if the key variables exhibit some behavior that is

highly software-predictable, i.e., in form of specific

patterns that can be expressed easily and cost-

effectively in software.

We use value profiling and pattern matching to find

predictable variables. We instrument the code, run the

instrumented executable to gather the generated values

of the key variables being profiled, and then analyze

the data by pattern matching.

Our value-pattern matching is done by a software

pattern capturer called oracle predictor. Fed with the

data from value profiling, the oracle predictor tells if a

value sequence matches a prediction pattern. This

oracle predictor can be run either on-line during value

profiling or off-line afterwards.

The oracle predictor is flexible and extensible with

many built-in patterns, such as last value, constant

stride, bit shift, etc. Because it is implemented in

software, not only simple but also complicated

prediction patterns can be built in the oracle predictor.

It tries to match the input value sequence with all pre-

defined patterns in parallel, and at the end, outputs the

pattern that has the highest matching ratio and the

corresponding matching ratio which is later used as its

prediction accuracy when the variable is selected for

value prediction.

5 Software value prediction

After discovering prediction patterns by selective

value profiling, we have to select which variables to

be value-predicted and to generate software value

prediction code for the SPT loops.

5.1 Selection of SVP variables

We determine if a variable should be value-predicted

based on the relative gain from value prediction. We

calculate the misprediction penalty and compare it

with the original misspeculation penalty. We also

compare the size of the predictor code inserted in pre-

fork region with the depending set size of the original

critical dependence. Only when the misprediction

penalty is considerably smaller than the original

misspeculation penalty and the size of the software

predictor is both acceptable and apparently smaller

than the original depending set size, will the variable

be selected to be value-predicted.

5.2 Code transformation with SVP

Once we identify the variables to be predicted, we

transform the loop into SPT form and add value-

prediction code in it. Below we give a generic

description of the transformation steps.

Assume we want to predict the value of variable x

with the pattern f(x). We first introduce a new

variable pred_x to store the predicted value.

For loop iteration speculation, we compute pred_x at

the pre-fork region of the current iteration and use it as

the predicted value of variable x at the beginning of

next iteration. To verify the value prediction, we

compare the value of pred_x with actual value of

variable x at the end of current iteration. If they are

not equal, meaning that the value is mispredicted, we

correct pred_x with the actual value of x. This

guarantees the correctness of final execution of the

next iteration. Figure 2 illustrates how software value

prediction code is added to a SPT loop.

Note that the code introduced by software value

prediction changes both the pre-fork region size and

the loop body size. These two sizes are important

factors in our SPT cost model. So far in our studies,

these changes are found small and have negligible

impact in the final SPT performance.

5.3 Safe dependence slice predictor

The above mechanism of selective value profiling and

software value prediction can be extended to cover

variables whose values are not directly predictable on

its own but can be predicted from other known or

predicted values. The key observation here is: If a

variable depends on some variables that are

predictable or known to be correct, the variable itself

 pred_x = x; //initialize prediction
Loop: x = pred_x; //use prediction
 pred_x = f(x); //generate prediction
 fork(Loop); //boundary of partition

 … = foo(x);
 x = …;

 if (x != pred_x) //verify prediction
 pred_x = x; //recover misprediction

 if (cont) goto Loop;

 Figure 2. Software value prediction

First Value-Prediction Workshop June 7, 2003 22

Table 1: SPT simulation configuration

Pipeline core Itanium2-like

Fetch/issue/writeback

bandwidth
6 instructions/cycle

Commit/recovery mode fast-commit

Thread start/fast-commit

latency
6 cycles

Replay bandwidth

(correctly speculated

results only)

12 instructions/cycle

Cache size (byte) and

latency (cycle)

L1I:16K,1; L1D:16K,1;

L2:128K,5; L3:3M,12

Memory latency 150 cycles

can also be predictable using the corresponding

computation relations.

The general algorithm goes this way: We first identify

the variable's definition statement, which is the source

node of a critical cross-iteration dependence edge.

Next we analyze the SPT-graph to find out all intra-

iteration dependence edges that points to this

definition. If we find that all control and data

dependent variables of this definition are either

predictable or defined in the pre-fork region, then the

variable is predictable too. We call this variable

indirectly predictable. This process can be repeated

recursively to find out more indirectly predictable

variables that depend on indirectly predictable

variables including the variable itself. To software-

predict an indirectly predictable variable, we extract

the dependence slice and implement a safe (i.e., non-

faulting) version of the slice as the predictor.

6 Experiment results

We applied the software value prediction in our SPT

compiler framework and evaluated its effectiveness.

In this section we present some of the experiment

results. The result data shows that selective value

profiling is effective and software value prediction

significantly improves performance of speculative

parallel threaded computations.

6.1 Experiments and simulator

We performed experiments to evaluate the two major

techniques in this work, namely, selective value

profiling and software value prediction.

With the experiments that evaluate selective value

profiling, we want to measure the effectiveness of our

selection strategy. We also want to understand how

often the oracle predictor can successfully capture a

simple prediction pattern with high enough matching

ratio that allows subsequent software value prediction.

With the experiments that evaluate software value

prediction, we want to find out how software value

prediction can affect the SPT loop performance.

We used an in-house simulator for the experiments.

The simulator is a data-flow IPF simulator developed

for our SPT compiler research. It basically simulates

an IPF pipeline and executes the SPT code

sequentially. It maintains two separate clocks,

separate register states and speculative execution

states to keep track of the simulated parallel

speculative execution. It also simulates the shared

memory/cache system and performs the necessary

register and memory dependence checking. This

simulator is an approximate but fast simulator. Its SPT

performance results have been cross-validated with

another cycle-accurate but slow IPF SPT simulator.

The simulator supports many different SPT

configurations. Table 1 summarizes the SPT

configuration used in this study.

6.2 Selective value profiling

We experimented selective value profiling with

selected loops from three applications: compress95

from SPEC CPU95 and vpr, twolf from SPEC

CPU2000. We chose them because the selected loops

exhibit considerably different behaviors with respect

to the prediction patterns.

Table 2 shows the results of the selected loops. For

each application, we have three columns: variable,

pattern and ratio. The column variable lists the

selected variables being profiled, together with its

source information such as the function name, its

corresponding loop id and the source file name. The

column pattern lists the matched pattern. It is N/A

when there is no obvious matched pattern. The

column ratio gives the corresponding matching ratio.

The data show the importance of selective value

profiling: Most selected variables are critical for SPT

performance and are found to be predictable with

some patterns. Also note that a low matching ratio,

like 0.30 for the variable out_count in compress95,

does not necessarily mean that we should not apply

software value prediction on it. It can be the case that

its dependence probability is higher than the

misprediction probability, say, 1.0 vs. 0.7 (i.e, 1 –

0.3).

Without our variable selection strategy, the compiler

may need to profile far more variables than it does

currently. This would incur significant profiling

overhead and pattern matching difficulties, and may

even make value profiling virtually impractical. More

importantly, our variable selection strategy is neither

tricky nor arbitrary, it actually exposes the application

inherent properties that are reflected by data

June 7, 2003 First Value-Prediction Workshop 23

dependence, captured by our SPT-graph, and well

supported by our compilation framework.

6.3 SPT loop performance with SVP

For experiments on software value prediction, we

mainly measure the SPT loop performance with and

without software value prediction.

We applied software value prediction to five

applications from SPEC CPU2000. Table 3 shows the

performance results. All performance numbers

reported in the table are the speedups of program

execution times of the SPT executables on a two-core

SPT machine against program execution times of the

corresponding non-SPT executables on a single-core

machine. All non-SPT and SPT codes were compiled

at O3 optimization level with profile feedback. The

row “performance improvements without SVP” gives

the speedups achieved without application of the

software value prediction technique in our SPT

compilation. The row “performance improvements

with SVP” gives the speedups with software value

prediction. The last row “contribution of SVP in total

improvements” shows the contribution proportions of

the software value prediction technique in the total

improvement achieved by our SPT compilation.

From the experiment results, we can clearly see the

significance of software value prediction in SPT

transformation. For some applications, e.g. mcf and

twolf, the contribution of SVP in the total

improvement is higher than 90%. Overall, the

contributions are more than 50%. This also justifies

our philosophy of two-pass compilation and selective

value profiling. Software value prediction does not

necessarily require selective value profiling. However,

all results we show here are obtained with selective

value profiling. We are still exploiting other software

value prediction schemes. Nevertheless, we believe

value profiling is an essential means to discover

predictable variables.

Table 3: Effects of software value prediction

Application gzip vpr mcf parser twolf

perf. imprv.

without

SVP(%)

13.7 11.1 1.0 6.4 0.4

perf. imprv.

with

SVP(%)

17.1 29.0 15.1 22.8 24.4

contrib. of

SVP in total

imprv.(%)

19.9 61.7 93.4 71.9 98.4

Table 2: Selective value profiling experiments results

compress95 vpr twolf

Input data set input.ref input.lite input.lite
variable pattern ratio variable pattern ratio variable pattern ratio

in_count,

compress(),

10001,
compress95.c

const-

stride
1.00

bb_index,

try_swap(),

20002, place.c

const-

stride
1.00

netptr,

countf(), 30003,

countf.c

safe

depend.

slice

1.0

out_count,

compress(),

10001,
compress95.c

const-

stride
0.30

bb_index ,

try_swap(),

30003, place.c

const-

stride
1.00

termptr,

new_dbox(), 20002,

dimbox.c

Safe

depend.

slice

1.0

ent,

compress(),
10001,

compress95.c

N/A N/A

affected_index,

find_affected_nets(),
10001, place.c

const-

stride
0.77

termptr,

new_dbox_a, 50005,
dimbox.c

safe

depend.
slice

1.0

stackp,

decompress(),
10001,

compress95.c

last-value 1.00

affected_index,

find_affected_nets(),
30003, place.c

const-

stride
0.76

termptr,

term_newpos(),
10001, dimbox.c

safe

depend.
slice

1.0

last_ent,
decompress(),

10001,

compress95.c

const-
stride

0.96

termptr,
term_newpos_a(),

20002, dimbox.c

safe
depend.

slice
1.0

oldcode,

decompress(),

10001,
compress95.c

N/A N/A

termptr,

term_newpos_b(),

20002, dimbox.c

safe

depend.

slice

1.0

Variables*

selected for

profiling,

pattern matched

and matching

ratio.

(* For each

variable, we

also list its

function name,

loop id in the

function and the

filename)

termptr ,

dbox_pos_2(),

20002, dimbox.c

safe

depend.

slice

1.0

First Value-Prediction Workshop June 7, 2003 24

7 Conclusion

Value prediction and thread-level speculation are two

promising techniques to discover and exploit more

parallelism in applications. In this paper, we described

two major techniques, namely selective value

profiling and software value prediction, for

speculative parallel threaded computations. By taking

advantage of our two-pass SPT compiler framework,

critical dependences that potentially lead to big

misspeculation penalty are identified and selectively

value-profiled to determine if the associated variables

can be value-predicted. Then highly predictable

variables are fed back to the compiler and the

compiler implements the value prediction in software

in the final speculative parallel threaded code.

Experiments were performed to evaluate the

effectiveness of selective value profiling and the

performance of software value prediction. The results

showed that value prediction can be done without

expensive value prediction hardware supports, and the

proposed selective value profiling and software value

prediction techniques are effective and efficient. Five

SPEC CPU2000 benchmarks were compiled to

generate speculative parallel threaded code with and

without software value prediction. The performance

evaluation results showed that the software value

prediction boosts the average performance of five

speculative parallel threaded benchmarks by 14.3%,

with the average speedup improved from 6.5% to

21.7%.

As shown in this study, software value prediction is an

important and promising technique. We are currently

studying how to extend this basic idea to cover more

value predictable cases, perfecting our SPT

compilation and performing more extensive

evaluations. One important future work is to study the

influence of the software value prediction technique

on the SPT algorithms used in our compilation

framework. This includes the cost of value profiling

and the construction of the oracle predictor.

References

[CRT99] B. Calder, G. Reinman, and D. Tullsen, "Selective

Value Prediction", International Symposium on

Computer Architecture, 1999.

[FJL+98] C. Fu, M. D. Jennings, S. Y. Larin, and T. M.

Conte, "Value Speculation Scheduling for High

Performance Processors", in 8th International

Conference on Architectural Support for

Programming Languages and Operating Systems,

October 1998.

[FJL+98II] C. Fu, M. D. Jennings, S. Y. Larin, and T. M.

Conte, "Software-Only Value Speculation

Scheduling", Technical Report, Dept. of Electrical

and Computer Engineering, North Carolina State

University, Raleigh, NC27695-7911, June 1998

[Gab96] F. Gabbay, "Speculative execution based on value

prediction", Technical Report 1080, Department

of Electrical Engineering, Technion-Israel

Institute of Technology, 1996.

[GG98] J. Gonzalez and A. Gonzalez; "The Potential of

Data Value Speculation to Boost ILP";

International Conference on Supercomputing,

1998

[GM97] F. Gabbay and A. Mendelson, "Can Program

Profiling Support Value Prediction", International

Symposium on Microarchitecture, 1997.

[LWS96] M. Lipasti, C. Wilkerson and J. Shen, "Value

Locality and Load Value Prediction", International

Conference on Architectural Support for

Programming Languages and Operating Systems,

1996.

[LA00] E. Larson and T. Austin, "Compiler Controlled

Value Prediction Using Branch Predictor Based

Confidence", ACM/IEEE 33rd International

Symposium on Microarchitecture (MICRO-33),

December 2000.

[MG00] P. Marcuello and A. Gonzalez, "A Quantitative

Assessment of Thread-Level Speculation

Techniques", Proc. of the 1st. Int. Parallel and

Distributed Processing Symposium (IPDPS'00),

Canc? (Mexico), May 1-4, 2000.

[MTG99] P. Marcuello, J. Tubella, and A. Gonzalez; "Value

Prediction for Speculative Multithreaded

Processors"; International Symposium on

Microarchitecture, 1999.

[NGS99] T. Nakra, R. Gupta, and M.L. Soffa; "Global

Context-Based Value Prediction"; International

Symposium on High-Performance Computer

Architecture, 1999.

[ORC] Open Research Compiler, Intel Co. Ltd., http://ipf-

orc.sourceforge.net/.

[SS97] Y. Sazeides and J. Smith; "The Predicatibility of

Data Values"; International Symposium on

Microarchitecture, 1997.

[SS98] Y. Sazeides and J. Smith, "Modeling Program

Predictability", International Symposium on

Computer Architecture, 1998.

[TF01] R. Thomas and M. Franklin, "Using Dataflow Based

Context for Accurate Value Prediction", Proc.

International Conference on Parallel Architectures

and Compilation Techniques (PACT), 2001.

[WF97] K. Wang and M. Franklin; "Highly Accurate Data

Value Prediction using Hybrid Predictors";

International Symposium on Microarchitecture,

1997.

[ZCS+02] A. Zhai, C. B. Colohan, J. G. Steffan and T. C.

Mowry, “Compiler Optimization of Scalar Value

Communication Between Speculative Threads”,

The Tenth International Conference on

Architectural Support for Programming

Languages and Operating Systems (ASPLOS-X),

San Jose, CA, USA, Oct 7-9, 2002.

June 7, 2003 First Value-Prediction Workshop 25

