
Architecture Design of
the Runtime Engine of Google A2A
Xiao-Feng Li

xli@apache.org

Aug 10, 2025

mailto:xli@apache.org

Agenda
Introduction

Design Philosophy

Core Components

Workflow Overview

Proxy Examples

Summary

Appendix

A2A server as a proxy agent
The Google Agent-to-Agent (A2A) protocol enables collaboration between
heterogeneous AI agents by exposing any server-side agent as a standardized
interface to its clients. The A2A runtime engine is designed as a proxy agent: it does
not need to know the internal implementation of the actual agent but instead
provides a uniform way for clients to interact with it.

This proxy pattern is the foundation of the A2A server’s architecture:

• It proxies responses from the underlying agent to the client.

• It manages execution state and message history in a consistent manner.

• It supports multiple communication modes (streaming, non-streaming,
notifications).

Core Components
Consumer side (architecturally):
• RequestHandler: Entry point for client requests. Creates async AgentExecutor tasks, listens on the

EventQueue, and delivers responses back to the client.
• ResultAggregator: Consumes Events and updates the Task object. Ensures client-visible state reflects

consumed events only.

Producer side (architecturally):
• AgentExecutor: Wraps the actual agent execution. Produces Events from agent responses and

enqueues them via TaskUpdater.
• TaskUpdater: Produces task deltas encoded as Events. Does not directly mutate the Task object.

Data in between (architecturally):
• EventQueue: Central async buffer. Mediates between event production (executor) and consumption

(handler). Supports multiple consumption patterns.
• Task Object: Persistent representation of client-visible state and history. Supports retrieval,

continuation, and multi-turn interactions.

Agenda
Introduction

Design Philosophy

Core Components

Workflow Overview

Proxy Examples

Summary

Appendix

Design philosophy:
1. Proxy Pattern as the Guiding Principle
The A2A server positions itself between a client and an actual agent. It acts as a
standardized proxy agent with its own lifecycle management, ensuring that clients see
a consistent and predictable view of tasks regardless of the agent framework in use.

Key implication: The Task object on the server represents what the client sees, not
what the agent internally produces.

• Maintains a clean boundary between server (proxy) and agent (implementation).

• Enables A2A to work with heterogeneous agent frameworks (e.g., ADK, LangGraph).

Design philosophy:
2. Event-Driven Separation of Concerns
A distinguishing design decision is the temporal separation between:

• Event Production (agent executor) – agents generate raw outputs, encoded as
Events.

• Event Consumption (request handler + result aggregator) – events are processed
into client-visible state.

This separation provides resilience, filtering, and flexibility in how the client-facing
state is updated.

• Fire-and-forget event production by AgentExecutor.

• Task state updates only on consumption by ResultAggregator.

• Guarantees consistency and prevents corruption of Task state.

Design philosophy:
3. Central State for Multi-Turn Interactions
A2A maintains a Task object as the central abstraction of execution state.

• Tracks lifecycle states (submitted, in-progress, input-required, completed).

• Persists message history for multi-turn conversations.

• Can be retrieved or resumed across requests.

Design philosophy:
4. Asynchronous and Flexible Communication
The design leverages async producer-consumer patterns:

• AgentExecutor asynchronously enqueues events.

• RequestHandler consumes and forwards events to clients.

This allows support for streaming, batch responses, and webhook notifications without
altering the agent-facing API.

• Clients can flexibly choose response patterns without affecting agent execution
logic.

Agenda
Introduction

Design Philosophy

Core Components

Workflow Overview

Proxy Examples

Summary

Appendix

Simplified Workflow (high-level)

Setup – RequestHandler creates EventQueue and starts AgentExecutor.

Agent Execution – AgentExecutor runs agent logic and enqueues Events.

• Events may encode status deltas, artifacts, or notifications.

Event Consumption – RequestHandler dequeues Events, ResultAggregator applies
updates to Task.

• Task creation may occur either explicitly (at request start) or implicitly (via
ensure_task in event processing).

Response Delivery – Responses returned to client (batch or streaming).

Overall Flow
Agents register capabilities in Agent Cards and
communicate over HTTP (JSON-RPC) with streaming
feedback. The A2A server (often built on a framework like
Starlette) routes client requests to the appropriate agent
executor. A simplified common workflow of the A2A server is
as follows (shown in the simplified sequence diagram), a
RequestHandler may create an asynchronous event queue
and spawn a producer AgentExecutor to run the agent
logic. The remote agent (e.g. CurrencyAgent for exchange
rate) processes the query and yields intermediate
responses. These are enqueued as Events (status updates
or data/artifact chunks). Meanwhile, an asynchronous
consumer in the RequestHandler reads from the queue,
updating a persistent Task object with each event. Once the
task completes, the final Task state, especially the artifact,
is returned to the client in a JSON response. If the client
requested streaming, the server keeps the HTTP connection
open and sends each event immediately via Server-Sent
Events (SSE).

Task and Event
In A2A, every interaction (from user query up to the result returned that may involve
single-turn or multi-turn conversations) is framed as a Task (the stateful unit of work)
with a well-defined lifecycle. When AgentExecutor receives a request for the first
time, it creates a Task object indicating the start of the task, and enqueues it into the
EventQueue, then invoking the agent’s execution interface by passing the request to
the agent . As the agent produces response, the executor wraps each piece of the
response data into an event in one of two event types: a TaskStatusUpdateEvent (to
signal progress or state changes, e.g. “working”, “input-required”, “completed”) or a
TaskArtifactUpdateEvent (to deliver a chunk of generated data/artifact). These events
are then enqueued.

Meanwhile, the RequestHandler’s event consumer dequeues events from the queue,
updates the Task state and append messages or artifacts. Once a final event is
received (e.g. status = COMPLETED), the handler concludes the flow: it awaits any
remaining async tasks, removes the Task from its running set, and returns the Task
object (with full history and outputs) to the client after encapsulating the data into
structured A2A messages according to the communication protocol, e.g., JSON-RPC.

Streaming

Multi-turn

Streaming
A feature of A2A is streaming of incremental results. When a client needs immediate
feedback (e.g. a long document or continuous updates), it uses the message/stream
RPC method. In this mode, the server responds with Content-Type: text/event-stream
and pushes every event as an SSE packet. Each SSE “chunk” carries a JSON-RPC result
(matching the original request ID) that contains a Task or update Event. For example,
a TaskStatusUpdateEvent may include an interim message (“Analyzing data…”) or
mark the task as final, while TaskArtifactUpdateEvents carry payload chunks to be
reassembled. The SSE connection remains open until the agent signals completion
(final: true). Clients can then consume these events in real time, allowing low-latency
UI updates or incremental processing. If the connection drops prematurely, clients
may later call the tasks/resubscribe method to catch up on missed events.

Notification and Multi-turn
For clients that cannot stay connected (e.g. mobile apps, or in a long-time task), A2A
also supports push notifications: the server can send an HTTP POST to a client-
provided webhook when a task reaches a significant state (completed or awaiting
input). The client then uses tasks/get to retrieve the final Task.

A2A supports multi-turn conversations. If an agent processing a Task enters an
“input_required” state, it will emit a status event with input_required: true. The client
can then retrieve the task_id from event, and send a follow-up request including the
task_id indicating it as a follow-up request of the same Task. The RequestHandler will
load the saved Task (including its history), append the new message, and start a new
execution cycle. In effect, the conversation resumes within the context of the same
Task. This allows complex, branching interactions: each turn produces additional
events that update the same Task record, preserving context across messages.

Agenda
Introduction

Design Philosophy

Core Components

Workflow Overview

Proxy Examples

Summary

Appendix

A2A Server (Proxy) for ADK Agent
To implement an A2A server for an ADK agent, it is basically to implement the AgentExecutor
using the agent runner, where the agent Event is converted to A2A server Event.

- Google has implemented a version adk-
python\src\google\adk\a2a\executor\a2a_agent_executor.py

- to_a2a() in agent_to_a2a.py creates an A2AStarletteApplication that creates an agent
runner instance for the specified agent, and passes the runner to the AgentExecutor for the
A2A server to call.

a2a_app = to_a2a(root_agent, port=int(os.getenv('PORT', '8001')))

- Run it with “python file:a2a_app --host localhost --port 8000”

ADK Agent (Proxy) for A2A Server
To implement an ADK agent to wrap a remote A2A server, just implement the
Agent._run_async_impl, where the Agent interaction request/response are converted to
remote A2A server's request/response.

- Google has implement a version adk-python\src\google\adk\agents\remote_a2a_agent.py

- RemoteA2aAgent() is a custom agent that passes user request to A2A server request, and
converts the response to agent event and returns it (yield).

remote_agent = RemoteA2aAgent(
 name="hello_world_agent",
 description=("Helpful assistant that can roll dice and check if numbers are prime."),
 agent_card=f"http://localhost:8001/{AGENT_CARD_WELL_KNOWN_PATH}",

)

- Run with “adk run”

Agenda
Introduction

Design Philosophy

Core Components

Workflow Overview

Proxy Examples

Summary

Appendix

Summary
The A2A server runtime engine embodies a proxy pattern with event-driven state
management. Its architecture emphasizes separation between agent execution and
client-visible state, asynchronous communication, and flexible task persistence.

This design achieves three critical goals:
• Consistency – Client sees a coherent task state regardless of agent framework.
• Scalability – Async event queue enables streaming, long-running tasks, and

notifications.
• Extensibility – Framework-agnostic design makes A2A adaptable to new agent

ecosystems.

Together, these principles make A2A a robust runtime engine for multi-agent
collaboration in enterprise-grade environments.

Agenda
Introduction

Design Philosophy

Core Components

Workflow Overview

Proxy Examples

Summary

Appendix

Google A2A vs. Google ADK
The concepts of Google A2A and Google ADK agent has following mapping relation:

A2A: Context  ADK: Session (an ongoing conversational interaction with the agent, can
be multi-task, multi-turn, as long as the client wants to continue.)

A2A: Task  ADK: N/A (from query up to finishing the query, may incur multi-turn
asking for more inputs.)

A2A: N/A  ADK: Invocation (one turn from user query up to a text response to the
user.)

Google ADK does not have the Task concept – this is a little weird design decision, since
whether a task a complete (no more input is needed) is decided by the agent. Google A2A
introduces Task concept based on Agent's response that has a status value to indicate the
task completion.

When an agent responds with a message to user asking for further input, it will be marked as
final response. For A2A server, this is not a terminal state of a task, but an interrupted state
that can be resumed.

	Slide 1: Architecture Design of the Runtime Engine of Google A2A
	Slide 2: Agenda
	Slide 3: A2A server as a proxy agent
	Slide 4: Core Components
	Slide 5: Agenda
	Slide 6: Design philosophy: 1. Proxy Pattern as the Guiding Principle
	Slide 7: Design philosophy: 2. Event-Driven Separation of Concerns
	Slide 8: Design philosophy: 3. Central State for Multi-Turn Interactions
	Slide 9: Design philosophy: 4. Asynchronous and Flexible Communication
	Slide 10: Agenda
	Slide 11: Simplified Workflow (high-level)
	Slide 12: Overall Flow
	Slide 13: Task and Event
	Slide 14: Streaming
	Slide 15: Streaming
	Slide 16: Notification and Multi-turn
	Slide 17: Agenda
	Slide 18: A2A Server (Proxy) for ADK Agent
	Slide 19: ADK Agent (Proxy) for A2A Server
	Slide 20: Agenda
	Slide 21: Summary
	Slide 22: Agenda
	Slide 23: Google A2A vs. Google ADK

