Harmony GCv5 Overview
Xiao-Feng Li
2007-4-22

Outline

Harmony GCv5 goal and progress
Current status

Parallel load balance

Runtime adaptations

Parallel compactors

Miscellaneous

Harmony GCv5 Overview, 2007-4-22

Harmony GCv5 Design Goal

Product-quality GC in both performance, robustness and flexibility
* Performance: Scalability and throughput

* Robustness: modularity and code quality

* Flexibility: configurability and extensibility

Proposal posted on August 22, 2006 in Harmony, and started then as a
Harmony community project

Harmony GCv5 Overview, 2007-4-22

Harmony GCv5 Development Progress

Progress
Performance Tuning
ew LOS collector and FinRef submitted
Helper inlining GC support submitted
Write barrier inlining proposed
Parallel forwarding submitted.

Parallel compactor submitted
Identified parallel compaction algorithm

Non-generational support submitted
Generational GC submitted.

JET write barrier submitted Debugging for tests
Mark-compact collector submitted

Trace-forward collector submitted / 64-bit Porting
High-level design proposed. GCv5 Started.

week34 36 38 40 42 44 46 48 50 52 week2 4 6 8
2006 2007

4 Harmony GCv5 Overview, 2007-4-22

Outline

Harmony GCv5 goal and progress
Current status

Parallel load balance

Runtime adaptations

Parallel compactors

Miscellaneous

Harmony GCv5 Overview, 2007-4-22

GCv5 Current Status:
Parallel and Generational GC

Parallel and Generational GC

* Allocation is always in parallel

* Parallel marking of live objects
Parallel copying of nursery object space (NOS)
Parallel compaction of mature object space (MOS)
More than one algorithms for comparison study

Largely in C language for efficiency and conciseness, with OO design
and modularity

Harmony GCv5 Overview, 2007-4-22

Modular Design: Space and GC

One collection algorithm decides one space
Fspace: trace & forward, or mark & copy
Mspace: Lisp2-compaction, or 2-pass compaction
Lspace: mark-sweep, or compaction
All spaces inherit Space class

GC structure is:
* Heap manager, managing multiple spaces, or
* Collection coordinator, coordinate collections of different algorithms

* Easy to configure or build new GC algorithms
— Any GC implementation should inherit GC class

Harmony GCv5 Overview, 2007-4-22

Modular Design: Threading and Allocator

Threading is abstracted into Mutator and Collector

* Mutator and Collector inherit from Allocator class
— Mutator allocates during application execution
— Collector allocates during garbage collection (for copying GC)

* Collector number is equal to processor number or specified in
command line

* Currently collectors and mutators not run concurrently
— In other word: stop-the-world GC
— Concurrent GC is planned next

Harmony GCv5 Overview, 2007-4-22

GCv5 Design: Generational Control

Generational control is decoupled from spaces and threading
* Spaces and threading know only GC, not Generational GC (GC_Gen)

* Three spaces
— NOS: nursery object space (managed as a Fspace)
- MOS: mature object space (managed as a Mspace)
— LOS: large object space (managed as a Lspace)

* Space sizes are variable at runtime
— Adjust the space boundary dynamically

Harmony GCv5 Overview, 2007-4-22

GCv5 Design: Flexibility

Multiple configurations

* Generational or non-generational collection

* Partial heap collection or full heap collection

* NOS supports half-space copying (elder-first collection)
* Space variable size or fixed size at runtime

GCv5 is a Superset of GCv4 and GCv4.1 (conceptually)

10 Harmony GCv5 Overview, 2007-4-22

Platforms and other functionalities

Supported platforms:
* 0OS: MS Windows and Linux
* Arch: 32-bit and 64-bit (compressed pointer)

Finalizer and weak reference support
* Implemented in native separate threads

GC core data structures
* Root set, remember set, task pool, etc.
* Designed with parallelization support

Platform-specific APIs are in one header file

11 Harmony GCv5 Overview, 2007-4-22

Outline

Harmony GCv5 goal and progress
Current status

Parallel load balance

Runtime adaptations

Parallel compactors

Miscellaneous

12 Harmony GCv5 Overview, 2007-4-22

GCv5 Parallelization Load Balance

Three algorithms were experimented for marking and forwarding
1. Pool-sharing parallelization

2. Work-stealing parallelization [Flood, et al. JVMO01]
e Need deal with stack overflow

3. Task-pushing parallelization
e No synchronization operations in GC marking
e A paper published in IPDPS'07

Currently pool-sharing is selected for GCv5 code base

13 Harmony GCv5 Overview, 2007-4-22

GCv5 Parallelization Load Balance:
Pool-sharing in Parallel Marking

. Shared Pool for task sharing Collector
. One reference is a task

Mark Stack Task Block Task Pool

. Collector grabs task block
from pool

. Pop one task from task block, /
push into mark stack

. Scan object in mark stack in
DFS order

. If stack is full, grow into
another mark stack, put the
full one into pool

. If stack is empty, take
another task from task block Need synchronization for pool access

14 Harmony GCv5 Overview, 2007-4-22

GCv5 Parallelization Load Balance:
Work-stealing in Parallel Marking

1. Each collector has a thread-local Collector
mark-stack, which initially has
assigned root set references

. Collectors operate locally on its
stack without synchronization

Mark Stack

4

. If stack is empty, collector steals
a task from other collector’s
stack’s bottom

. If stack has only one entry left, ‘
the collector need
synchronization access

. If stack is full, it links the objects
into its class structure (should
never happen in reality) Need synchronization for task stealing

15 Harmony GCv5 Overview, 2007-4-22

GCv5 Parallelization Load Balance:
Task-pushing in Parallel Marking

1. Each collector has a thread local Collector
mark stack for local operations

. Each collector has a list of output Mark Stack ' Task Queue

task queues, one for each other
collector

. When a new task is pushed into
stack, the collector checks if any
task queue has vacancies. If yes,
drip a task from mark stack and
enqueue it to task queue

. When mark stack is empty, the
collector checks if there are any
entries in its input task queues.

No synchronization instruction !!
If yes, dequeue a task

16 Harmony GCv5 Overview, 2007-4-22

Outline

Harmony GCv5 goal and progress
Current status

Parallel load balance

Runtime adaptations

Parallel compactors

Miscellaneous

4 Harmony GCv5 Overview, 2007-4-22

GCv5 Runtime Adaptation

Runtime adaptation is essential for good GCv5 performance

* Dynamic space size adjustment
— So that no space wasted

* Dynamic major and minor collection switching
— To achieve maximal throughput

* Dynamic switching between generational and non-generational mode
— To leverage the advantages of both

The first two are default in GCv5 now, the last one is not

18 Harmony GCv5 Overview, 2007-4-22

GCv5 Runtime Adaptation:
Harmony GCv5 Space Adjustment

Default with three spaces: LOS, MOS and NOS
* The boundaries are runtime adjustable (throughput driven)

reserve NOS

t t

los_boundary nos_boundary

nos_boundary is adjusted after every collection
los_boundary is adjusted when necessary after major collection

If MOS reserve space is not enough to hold NOS survived objects, fall-
back compaction happens.

19 Harmony GCv5 Overview, 2007-4-22

GCv5 Runtime Adaptation:
Minor and Major Collection Switch

Minor collection (M) is much faster than major collection (m)
* GC should use minor collection as more as possible

* Runtime adaptively switch (throughput driven) between M and m
— Partial heap collection vs. full heap collection
— A paper published in CAECW-10, 2007.

Tp

a_ Max Average throughput

MmmmmM
20 Harmony GCv5 Overview, 2007-4-22

GCv5 Runtime Adaptation:
Generational and Non-generational Switch

Gen mode is usually better than non-gen mode

* If application behavior matches with generational hypothesis, or
* If overhead for non-gen mode mark-scan is too high

* Write barrier has overhead in gen-mode

* Runtime adaptively switch between gen and non-gen mode
- Hybrid mode gets better performance than either gen or non-gen
— Real performance depends on workloads

21 Harmony GCv5 Overview, 2007-4-22

Outline

Harmony GCv5 goal and progress
Current status

Parallel load balance

Runtime adaptations

Parallel compactors

Miscellaneous

22 Harmony GCv5 Overview, 2007-4-22

GCv5 Compaction Algorithms

Three compaction algorithms developed

* Parallelized LISP2-basd mark-compactor
* Chained reference threaded-compactor
* 2-pass parallel move-compactor

Currently GCv5 use move-compactor and mark-compactor for
respective collection scenarios

pic Harmony GCv5 Overview, 2007-4-22

GCv5 Compaction Algorithm:
Parallel Mark-Compactor

Parallelism granularity: block (default size is 32K)
* Source block: from which data are copied
* Destination block: to which data are copied

Key idea:

* During target address computing phase
— Every target block maintains a list pointing to its source blocks

* During object moving phase
— A collector grabs a source block from the lists one by one
— A collector moves live objects from its src to dest block

e Guarantee data in one area has been moved before it is overwritten

24 Harmony GCv5 Overview, 2007-4-22

GCv5 Compaction Algorithm:
Parallel Move-Compactor

Has fewer passes than mark-compactor
* Idea based on Abuaiadh, et al. OOPSLA'04.
* Parallelization scheme in GCv5 is different

Before Compaction

. . 0
g
. . 0
P [
. L

g
g
0
P

P »
<« » <«

Sector1 | . Sector 2

After Com_f)action

0
.
. &£
. Q
S
. 0
o
e
"o
o

Sector 1 Sector 2

Free spaces between live objects in a sector are not compacted

25 Harmony GCv5 Overview, 2007-4-22

Outline

Harmony GCv5 goal and progress
Current status

Parallel load balance

Runtime adaptations

Parallel compactors

Miscellaneous

26 Harmony GCv5 Overview, 2007-4-22

Performance Tuning and Debugging

Performance tuning

* Parallelization

* Runtime adaptation
* Data prefetching

* Inlining of allocation and write barrier routines
— Written as short methods in Java
— Only for fast path, and fall back to native GC code

Debugging took time
* Mainly in finalizer interactions with DRLVM threading subsystem

27 Harmony GCv5 Overview, 2007-4-22

Work in Progress

Harmony GCv5 Solidification for robustness/performance

Parallel scalability on large number of processors/cores
64-bit support tuning for large heap

28 Harmony GCv5 Overview, 2007-4-22

Acknowledgement

Harmony GCv5 is a result of the community, just to name a few:
Chunrong Lai, Ligang Wang, Yunan He, Ji Qi, Ivan T. Volosyuk
Steve Blackburn, Washburn Weldon, Rana Dusgupta

Mikhail Fursov, Vladimir Ivanov

Sorry to the developers whose names are missing here.

29 Harmony GCv5 Overview, 2007-4-22

Publications During GCv5 Development

Ming Wu, Xiao-Feng Li, Task-pushing: a Scalable Parallel GC Marking Algorithm
without Synchronization Operations, In Proceedings of 21st IEEE International
Parallel & Distributed Processing Symposium (IPDPS 2007), Long Beach, CA,
March 26, 2007.

Chunrong Lai, Ivan T Volosyuk, and Xiao-Feng Li, Behavior Characterization and
Performance Study on Compacting Garbage Collectors with Apache Harmony, 1In
Proceedings of Tenth Workshop on Computer Architecture Evaluation using
Commercial Workloads (CAECW-10) held with HPCA-13, Phoenix, AZ, Feburary

2007.

30 Harmony GCv5 Overview, 2007-4-22

