Design a Product-Ready JVM
for Apache Harmony

Xiao-Feng L1, Pavel Ozhdikhin

Contributors: Mikhail Loenko, Vladimir Beliaev

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

»e | IWWNSSO

Agenda

Harmony and DRLVM modularity
Garbage Collectors in DRLVM
JIT Compilers in DRLVM
Engineering infrastructure

Design a product-ready JVM for

Apache Harmony

Apache Harmony

e Primary goal — full implementation of Java SE
— Compatible class library

— Competitive virtual machine
— Full JDK toolset

* Founded in Apache Incubator, May 2005
 Became Apache Harmony Project, Oct 2006

« Facts today
— 277 committers at the moment, 30 commits weekly
— 250 messages weekly in mailing list
— 150 downloads weekly

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

Design Modularity

* Pluggability: easier for developers,
researchers, and testers

beans
ut|I
ecurity
. . Java SE class libraries

Class libra

VMI (C) Kernel classes (Java) native

code

v

—
O
=
>
=
=

Trace | |[|
compile

Memoac Threa

Interpre
P manager manager

Portability Layer

Hardware / Operating System

&
O
v
C
=
=
—
|

Design a product-ready JVM for

Apache Harmony

Harmony Status

e ~2.3 million LOC (Java 1.6m, C/C++ 0.7m)

 Components
— API: 98% JDKSJ5, 90% JDK6

— VMs: JCHEVM, BootJVM, SableVM, DRLVM,
evaluation version of BEA JRockit binary

— Tools: javac, javah, jarsigner, keytool

* Platforms
— Windows/Linux, 32bit/64bit

 Serious testing and engineering infrastructure

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

Harmony DRLVM

e The current default VM of Harmony

 Components
— Two JIT compilers: fast and optimizing
— Three GCs: simple/parallel/concurrent

— Other features: optimized threading, JVMTI, class
unloading, interpreter, etc.

e Targets
— Robustness, performance, and flexibility
— Server and desktop
— Product-ready

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

DRLVM Modularity Principles

* Modularity: Functionality 1s grouped into a limited
number of coarse-grained modules with well defined
interfaces.

* Pluggability: Module implementations can be replaced
at compile time or run time. Multiple implementations
of a given module are possible.

» Consistency. Interfaces are consistent across platforms.

» Performance: Interfaces fully enable implementation
of modules optimized for specific target platforms.

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

DRLVM Modules
S -

n (Other modules

?JUMTﬁvaI\ﬁfJNI \?/K errel Classes
I

A= cies — Class loader
i ovM_TM /&UM GC/%VM_CmﬂIftfr_pr_E:ter: e . - Class Veriﬁer
'________________._::::___ ________ P_J l: X

GC Execution Manager

- * Advantages
| ooooIoo — Easy for
RARIRN:Y developing and

______ 1
I e
. ZTM WM CTM_GC | Thriead helpars

e wanager = testing
I AT . e — Easy to use third-
I | S party components
Execution Engine L Portability

DRL Yirtual Machine

Design a product-ready JVM for

Apache Harmony

Modularity with Performance

e Cross-module (shared lib) procedural call has
extra penalties

— Indirect call overhead, and cannot be inlined

* “Runtime helpers” to solve the problem
— Frequently accessed procedures written 1n Java
— JIT 1nlines the helpers

— Helpers use “magics” for pointer arithmetics and
compiler intrinsics

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

Helper: Bump-Pointer Allocation

@Inline
public static Address alloc (int objSize, int allocationHandle)

{
Address TLS BASE = VMHelper.getTlsBaseAddress();

Address allocator addr = TLS BASE.plus (TLS GC OFFSET) ;
Address allocator = allocator addr.loadAddress();
Address free addr = allocator.plus(0);

Address free = free addr.loadAddress();

Address ceiling = allocator.plus(4) .loadAddress();

Address new free = free.plus(objSize);
if (new free.LE(ceilling)) {
free addr.store(new free);
free.store(allocationHandle) ;
return free;

}

return VMHelper.newResolved (objSize, allocationHandle);

»e | IWWNSSO

Design a product-ready JVM for

Apache Harmony

Agenda

 Harmony and DRLVM modularity
* Garbage Collectors in DRLVM

e JIT Compilers in DRLVM

* Engineering infrastructure

»e | IWWNSSO

Design a product-ready JVM for

Apache Harmony

DRLVM GC Design Goals

* Product-quality GC in robustness,
performance, and flexibility
— Robustness: modularity and code quality
— Performance: scalability and throughput
— Flexibility: configurability and extensibility

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

DRLVM GC Current Status

e GCv4.1

— Copying collector with compaction fallback
— Simple, sequential, non-generational

e GCv5

— Copying collector with compaction fallback
— Parallel, generational (optional)
e Tick
— On-the-fly mark-sweep-compact
— Concurrent, parallel, generational (optional)

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

GCv4.1: Heap Layout

Free area New objects Newborns

e During a collection, new objects are copied to
free area

Free area New objects Newborns

 If free area is inadequate, GC changes to
compaction algorithm

Free area | New obijects | Newborns
| l

»e | IWWNSSO

Design a product-ready JVM for

Apache Harmony

GCv4.1: Ret-Chain Compactor

Left objects Right objects
I Obj_info |
_ l reference
ﬂ Object reference
reference L
I Chaining ptr | | | |
. Chaining ptr
ﬂ Object Obj_info
reference

« Chain the references to an object, so that they
can be updated once the object’s new location 1s
known. No extra space needed, two heap passes

pe | IWWNSSO KX

Design a product-ready JVM for 15

Apache Harmony

GCv4.1: Hashcode

O

U 8 hashcode states
W — Hash No, Hash Accessed, Hash Allocated

C New object Hash_Accessed Hash_Allocated
g Hash_No

Z Hashcode == Address Hashcode

e * Assumptions
—I — Most objects not accessed for hashcode

— Most objects accessed for hashcode before they
survive once collection (moved)

Design a product-ready JVM for

Apache Harmony

pe | IWWNSSO KX

G(Cv4.1: Characteristics

Good performance
Simple, easy to learn

But the algorithm 1s not parallel
— Cannot leverage multiple cores

Has no generational support
We developed GCv5

Design a product-ready JVM for

Apache Harmony

GCv3: Heap Layout
Large objects - Free New objects

e Minor collection: young objects are copied to
free area, large object space are mark-swept

Large objects - Free New objects

* Major collection: compact non-LOS and LOS

Large objects — Free ‘ New objects

Design a product-ready JVM for

pe | IWWNSSO KX

Apache Harmony

Parallel Marking& Copying

m « Parallel pool-sharing marking: Collector 1
m 1. Shared Pool for task sharing Mark Stack 155k Block
2. Collector grabs task block from pool o G| v\g\ Task Pool
‘ 3. One reference is a task / \—0—
4. Pop one task from task block, push
Z into mark stack \K
5. Scan object in mark stack in DFS e
Z OI'dGI' Collector 2 Ly
= 6 Ik L g OO | sk o
_I pool 6 G|
7. If stack 1s empty, take another task
x from task blolc?lzy /

Design a product-ready JVM for

Apache Harmony

GCv3: Parallel Compactor

dest blocks src blocks ° TWO para”el compactlon
(S SN algorithms

e Here shows Parallel LISP2
(S S SN SN Compactor

dest blocks Thread 1 Thrcad 2 Thread 3

[t e

- v s S T

l Next block o | - [6 |e-——7 é

I > Sreblock list | _~—_‘—_;“};_‘:’_ﬁ g

o] e 747 W::;_;_____zw 5

1. Maintain a src-block list for each v To-am =

dest block 7 ’E‘“;-;————-m vg

2. Grab a src-block from the list [0 e

atOmica”y in para”el for o > Sre block list
compaction ﬁ NN S Next e block

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

GCv3S: Generational Collection

pe | IWWNSSO KX

Before GC Non-generational Iﬁ?_ﬂj set
LOS | MOS . ~—
After GC ~ — =
LOS MOS NOS
Before GC Generational Remtﬂﬁﬁot set
[ECERN 7 | Voectipiechil M IR
After GC ~ ~ =

* Assumptions
— Most objects die young
— Remember set do not keep lots of floating garbage

Design a product-ready JVM for 21

Apache Harmony

GCv3: Runtime Adaptations

« Runtime adaptation for maximal GC
throughput
— Select major or minor collections
— Adjust the boundaries between spaces

— Switch between generational and non-
generational collections (off by default)

— Tune finalization speed

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

pe | IWWNSSO KX

GCv5: Characteristics

Good performance
Scalable on multiple cores
Runtime adaptations

But pause time 1n major collection 1s high

Not support conservative collection
We developed Tick

Design a product-ready JVM for

Apache Harmony

Tick: Overview
» Tick 1s on-the-fly mark-sweep GC

— Non-moving, conservative GC possible
— Easy to “free” individual objects

mutator [

Root set enumeration collector —————

* Heap layout
— Partition Sweep-Space into chunks
— Each chunk only holds objects of certain size

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

»e | IWWNSSO

Tick: Heap Layout

Mutator 1 Mutator 2 PFC pool array
8B %- 8B %-)-)- >-
128 128 Lo RN
168 168 [7 — > - -_——>
24B e
1 R
| 1kB e
Aligned free chunk list array Unaligned free chunk list array
/-—>-—>- Ta— 11— 11— 1—> 1—>1—>1
/- > -
;. >. 32KE [e

128KH
i = -[-

Super free chunk list >I >I >I >I >I >I

Design a product-ready JVM for

Apache Harmony

Tick: Compactor

 Mark-sweep has fragmentation problem

« Compact heap optionally when appropriate
— Fast compaction algorithm

B <=20%

23% 45% 80% 16% 10% 38% 65% 87% 14% 93% 55% 6% 18% 31% 70%
20~40%

— T
. 40~60%

18% 6% 14% 10% 16% 31% 38% 23% 55% 45% 70% 65% 80% 93% 87%

60~80%

i1l
~~ ~" ~ s1% " -~
FREE FULL

<100%

O
w
e
C
=
=
—
|

Design a product-ready JVM for

Apache Harmony

Tick: Characteristics

* Short collection pause time

— Target 1s at ms level
— Tradeoff with GC throughput

 Parallel and adaptive collection
* Working models

— Concurrent or stop-the-world

— Standalone or 1n generational GC

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

GC Modularity

v . External modularity

— Different GC implementations can be specified in

C command line

— Achieved by implementing the required GC
interfaces in include/open/gc.h
; Internal modularity

— GCv5 and Tick are implemented on the same code
— base

—I — Achieved by coordinating different space

collection algorithms
‘ — Shared GC verbose, GC verifier, etc.

Design a product-ready JVM for

Apache Harmony

»e | IWWNSSO

Agenda

Harmony and DRLVM modularity
Garbage Collectors in DRLVM
JIT Compilers in DRLVM

Engineering infrastructure

Design a product-ready JVM for

Apache Harmony

DRLVM execution engines

* The Execution Manager

e Jitrino compilers:
— Jitrino.JET
— Jitrino.OPT

* Optimizations
* Pipeline Management Framework
* Internal profiler

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

m » Keeps a registry for all]y
W execution engines and profile — =] [=]
collectors available at run time o e v
‘ « Selects an execution engine to R
Complle a method by a VM eeeee te method request (Method{ilandle) ‘ %
g request according to the s s s i
configuration file i v S
Z Coordinates profile collection s ‘
= and usc between various |
I execution engines = e
° Supports asynchronous remmplememreques(Memodi.T) select next JIT 1(om
recompilation 1n a separate Pa—T -
thread to utilize multi-core R |

Design a product-ready JVM for

Apache Harmony

Dynamic profilers

EB_PROFILER
Entry/backedge profile. Collects 2 values for each method:

— number of times a method has been called (entry counter)

— number of loop interactions (backedge counter) performed in a
method

EDGE_PROFILER
Edge profile. Collects 2 types of values for each method:

— Number of times a method has been called
— Number of times every branch in a method has been taken

VALUE PROFILER

Value profile. Collects up to N the most frequent values for each registered
profiling site in a method. Uses advanced Top-N-Value algorithm.

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

Jitrino compilers

e Jitrino.JET
— baseline compiler for IA32/Intel64

% platforms

i
O
O

g e Jitrino.OPT

_I — Optimizing compiler for IA32/Intel64/IPF

platforms

Design a product-ready JVM for

Apache Harmony

J . t . A h . t t
O Y i r t u a | M a c i n
m ‘ 3 F 3 F 3 F 3
¥M — JIT compile-time ¥M —|JIT run-time
m interface interface
B un-time info Run-time L
(GC map,...) support
> Jitrino. JET
_ itrino. | .
Jitrino JET | o emitter_' <Blt5) -
Law-lewvel Registry un-time infoy, ., Run-time
optimizer allocator (GC map,...) support
[F 3
JZRAE) Holgt?ml ;32\2?"
bytecode P
F 3 Py
1a-32/ o _
- Intel® 64 IA-32/Intel® 64 y Ia 32/Int_e| G |~
. code selector LIR Code emitter
ava .
translator | (R =LEro] R
B Itj:;gfe 1A-64 LIR l
14-64
Code emitter
_ v ;
a: Low-lewvel aFI{Iigv:I:E;\r{ un-time info Run-time
Legend: optimizer | | 25 (GC map...) support
I:I processor-independent components
[] 14-32/intel® 64 back-end
I:I 14-64 back-end

Design a product-ready JVM for

Apache Harmony

Jitrino.JET — baseline compiler

e Simple: no internal representation, just 2
passes over bytecode

 Small: ~500K code, ~14K NSLOCs

» Fast: Compilation speed ~ 10-20K methods
per second (1.5Ghz laptop)

* Supports JVMTI, VMMagic and can easily be
modified to support new features

 Produces more then 10 times faster code than
the interpreter (and ~2 times slower than the

code made by Jitrino.OPT)

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

Jitrino.JET: log sample

Java method:

public static int max(int x, int y) {
return x >y ? X : y;

Prologue: <store all callee-save registers in use>
H 0) ILOAD O

H 1) ILOAD 1

H 2) IF ICMPLE ->0<-

i 5) ILOAD 0
P 6) GOTO ->10<-

;7 9) ILOAD 1

;; 10) IRETURN

»e | IWWNSSO

Epilogue: <restore all callee-save register in use>

Design a product-ready JVM for

Apache Harmony

Jitrino.OPT — optimizing compiler

* The fast, aggressively optimizing compiler

» Pluggability facilitated by the Pipeline
Management Framework

 Features:

— High- and low-level intermediate representations

* Most optimizations run at the platform-independent high
level

— Supports edge and value profiles

— A flexible logging system enables tracing of major
Jitrino activities, including detailed IR dumps
during compilation

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

pe | IWWNSSO KX

Jitrino.OPT optimizations

Guarded devirtualization
Global Code Motion
Escape Analysis based optimizations:

— Synchronization elimination

— Scalar replacement
Array 1nitialization/copying optimizations

Array bounds check elimination

..and many other most known optimizations

Design a product-ready JVM for

Apache Harmony

Advanced optimizations

VM Magics and helper ilining

— Allow developers to write performance critical code in Java
using address arithmetic and low-level compiler intrinsics.

* Value profile guided devirtualization

— Effectively de-virtualize not only virtual but also interface
and abstract calls

* Lazy exceptions

— Create exception objects on demand, i.e. only if it’s actually
used in the exception handler

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

Pipeline Management Framework

O

—
N PMF - the JIT pluggability vehicle '\\Mf—' l

« PMF features:

Standard interface for the pipeline steps (IR transformers)
— Nested pipelines

— Full control over the pipeline steps and their options through the
Java property mechanism

— Rich control over the logging based on JIT instances, pipelines, class
and method filters

e PMF details:

— http://harmony.apache.org/subcomponents/drlvm/JIT PMF.html

Design a product-ready JVM for

Apache Harmony

Jitrino.OPT 1nternal profiler

The internal profiler (iprof) in the Jitrino.OPT compiler can
instrument the code so that per-method counters of the
instructions executed at run time will be dumped.

* To use iprof you need to create the iprof.cfg configuration file with the
profiler’s configuration and specify the following option:

-XX:jit.arg.codegen.iprof=on

» An example of the iprof output:

Method name Insts | ByteCodeSize | MaxBBExec HottestBBNum
java/lang/Thread.<clinit> 7 13 1 2
java/lang/Object.<init> 6445 1 6445 2
java/lang/Thread.<init> 2440 257 24 0

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

»e | IWWNSSO

JI'T Resources

Execution Manager:
http://harmony.apache.org/subcomponents/drlvin/EM.html

Jitrino JIT Compiler:
http://harmony.apache.org/subcomponents/drlvm/JIT.html

Pipeline Management Framework and Jitrino logging system:
http://harmony.apache.org/subcomponents/drlvm/JIT PMEF.html

Jitrino.OPT internal profiler:
http://harmony.apache.org/subcomponents/drlvm/internal _profiler.html

Harmony performance reports:
http://harmony.apache.org/performance.html

Design a product-ready JVM for

Apache Harmony

»e | IWWNSSO

Agenda

Harmony and DRLVM modularity
Garbage Collectors in DRLVM
JIT Compilers in DRLVM

Engineering infrastructure

Design a product-ready JVM for

Apache Harmony

Engineering Infrastructure

e Tasks

— Maintain code integrity
— Build and publish snapshots
— Pre-release testing

— Maintain and benefit from modular
architecture

— Obtain and publish test results
— Define Milestone schedule/criteria

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

pe | IWWNSSO KX

Harmony Quality Base

Classlib test suite: 23K tests
DRLVM test suites: 10K tests
Stress, reliability test suites: ~300 tests

Unit tests for 3rd party apps
— Eclipse: 40K tests, Geronimo: 600 tests, etc.

Application automated test scenarios
— App servers, client and GUI apps

Design a product-ready JVM for

Apache Harmony

Quality Engineering

* Pre-commit testing
— Commutter tests for 0.5 ~ 2 hours
* Code integrity testing
— Activates after any commit, fully automated

 Challenge: how to minimize traffic pressure to Apache
infrastructure

e Snapshot testing
— Up to 48 hours testing cycle, more tests
— Build snapshots for developers

* Pre-milestone testing
— Produce “‘stable builds”, go through all tests

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

pe | IWWNSSO KX

What we ofter

* For Harmony developers:
— Up-to-date Code Base Health Indicators P e e
— Snapshots accompanied by testing results m
* Windows/Linux on 1A32/Intel64 -
* For Harmony Users: =
— More stable snapshots, and -

— Milestone “Stable builds” every 2~3 months,
— No official Harmony releases available yet

* For Harmony Testers:

— Build and Test Infrastructure 2.0 — easy add any test suite to the
testing cycle using test suite adaptors

Design a product-ready JVM for

Apache Harmony

Harmony Testing Process

[—]

ﬂ Snapshot%

. stable
f 4P Iat:orms snapshof 4 ﬁést?glgms build
———| 8scenarios 26 sce);wario
S| Integriy Flosts ==
testing 7x24 tests 1
] BllE=
= Sl

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

Research Exploiting Modularity

e Moxie JVM pI’Oj €Ct (http://moxie.sourceforge.net/)
— A JVM written 1n Java uses Jitrino.OPT

e« Java STM (Software Transactional Memory) in DRLVM

— JIT recognizes atomic constructs and injects calls
to the STM library into the code

 Dataflow Java based on DRLVM

— To introduce CSP (communicating sequential process) 1nto
Java programming

pe | IWWNSSO KX

Design a product-ready JVM for

Apache Harmony

Workloads Example: EIOffice

 Evermore EIOftice (http://www.evermoresw.com)
— Large scale office suite written in pure Java
— Extensively uses Swing/AW'T

e EIOftfice with Harmony (http://eio-harmony.sf.net)
— First release: v0.02 e e e

Demo

O
w
e
C
=
=
—
|

Design a product-ready JVM for

Apache Harmony

pe | IWWNSSO KX

Summary

We develop DRLVM as a product-ready JVM
for Apache Harmony

DRLVM benefits from its modularity design
1n

— Developing, researching, and testing
DRLVM has sophisticated GC and JIT
implementations

— Still under heavy development to enhance

— Real time GC, huge heap support, etc.

Design a product-ready JVM for

Apache Harmony

Thanks!

&
Questions?

»e | IWWNSSO

Design a product-ready JVM for

Apache Harmony

