
Design a product-ready JVM for

Apache Harmony

1

Design a Product-Ready JVM

for Apache Harmony

Xiao-Feng Li, Pavel Ozhdikhin

Contributors: Mikhail Loenko, Vladimir Beliaev

Design a product-ready JVM for

Apache Harmony

2

Agenda

• Harmony and DRLVM modularity

• Garbage Collectors in DRLVM

• JIT Compilers in DRLVM

• Engineering infrastructure

Design a product-ready JVM for

Apache Harmony

3

Apache Harmony

• Primary goal – full implementation of Java SE
– Compatible class library

– Competitive virtual machine

– Full JDK toolset

• Founded in Apache Incubator, May 2005

• Became Apache Harmony Project, Oct 2006

• Facts today
– 27 committers at the moment, 30 commits weekly

– 250 messages weekly in mailing list

– 150 downloads weekly

Design a product-ready JVM for

Apache Harmony

4

Design Modularity

• Pluggability: easier for developers,

researchers, and testers

la
u
n
ch

er

Trace JIT

compiler
Interpreter

Memory

manager

Thread

manager

VM

XML NIO

beans

native

code

lang

util

net

io

JNI

Portability Layer

Hardware / Operating System

VMI (C)

security

Java SE class libraries

JSE API

Class library

Kernel classes (Java)

Design a product-ready JVM for

Apache Harmony

5

Harmony Status

• ~2.3 million LOC (Java 1.6m, C/C++ 0.7m)

• Components

– API: 98% JDK5, 90% JDK6

– VMs: JCHEVM, BootJVM, SableVM, DRLVM,
evaluation version of BEA JRockit binary

– Tools: javac, javah, jarsigner, keytool

• Platforms

– Windows/Linux, 32bit/64bit

• Serious testing and engineering infrastructure

Design a product-ready JVM for

Apache Harmony

6

Harmony DRLVM

• The current default VM of Harmony

• Components
– Two JIT compilers: fast and optimizing

– Three GCs: simple/parallel/concurrent

– Other features: optimized threading, JVMTI, class
unloading, interpreter, etc.

• Targets
– Robustness, performance, and flexibility

– Server and desktop

– Product-ready

Design a product-ready JVM for

Apache Harmony

7

DRLVM Modularity Principles

• Modularity: Functionality is grouped into a limited
number of coarse-grained modules with well defined
interfaces.

• Pluggability:Module implementations can be replaced
at compile time or run time. Multiple implementations
of a given module are possible.

• Consistency: Interfaces are consistent across platforms.

• Performance: Interfaces fully enable implementation
of modules optimized for specific target platforms.

Design a product-ready JVM for

Apache Harmony

8

DRLVM Modules

• Other modules

– Class loader

– Class verifier

• Advantages

– Easy for
developing and
testing

– Easy to use third-
party components

– Portability

Design a product-ready JVM for

Apache Harmony

9

Modularity with Performance

• Cross-module (shared lib) procedural call has

extra penalties

– Indirect call overhead, and cannot be inlined

• “Runtime helpers” to solve the problem

– Frequently accessed procedures written in Java

– JIT inlines the helpers

– Helpers use “magics” for pointer arithmetics and

compiler intrinsics

Design a product-ready JVM for

Apache Harmony

10

Helper: Bump-Pointer Allocation

@Inline

public static Address alloc(int objSize, int allocationHandle)
{

Address TLS_BASE = VMHelper.getTlsBaseAddress();

Address allocator_addr = TLS_BASE.plus(TLS_GC_OFFSET);

Address allocator = allocator_addr.loadAddress();

Address free_addr = allocator.plus(0);

Address free = free_addr.loadAddress();

Address ceiling = allocator.plus(4).loadAddress();

Address new_free = free.plus(objSize);

if (new_free.LE(ceiling)) {

free_addr.store(new_free);

free.store(allocationHandle);

return free;

}

return VMHelper.newResolved (objSize, allocationHandle);

}

Design a product-ready JVM for

Apache Harmony

11

Agenda

• Harmony and DRLVM modularity

• Garbage Collectors in DRLVM

• JIT Compilers in DRLVM

• Engineering infrastructure

Design a product-ready JVM for

Apache Harmony

12

DRLVM GC Design Goals

• Product-quality GC in robustness,

performance, and flexibility

– Robustness: modularity and code quality

– Performance: scalability and throughput

– Flexibility: configurability and extensibility

Design a product-ready JVM for

Apache Harmony

13

• GCv4.1

– Copying collector with compaction fallback

– Simple, sequential, non-generational

• GCv5

– Copying collector with compaction fallback

– Parallel, generational (optional)

• Tick

– On-the-fly mark-sweep-compact

– Concurrent, parallel, generational (optional)

DRLVM GC Current Status

Design a product-ready JVM for

Apache Harmony

14

• During a collection, new objects are copied to
free area

Old objects Free area New objects Newborns

Old objects Free area New objects Newborns

Old objects Free area New objects Newborns

• If free area is inadequate, GC changes to
compaction algorithm

GCv4.1: Heap Layout

Design a product-ready JVM for

Apache Harmony

15

• Chain the references to an object, so that they

can be updated once the object’s new location is

known. No extra space needed, two heap passes

Object reference

reference

reference

Left objects Right objects

Obj_info

Object Obj_info

Chaining ptr

reference

Chaining ptr

GCv4.1: Ref-Chain Compactor

Design a product-ready JVM for

Apache Harmony

16

• 3 hashcode states

– Hash_No, Hash_Accessed, Hash_Allocated

New object

Hash_No

Hash_Accessed Hash_Allocated

Hashcode

• Assumptions

– Most objects not accessed for hashcode

– Most objects accessed for hashcode before they

survive once collection (moved)

GCv4.1: Hashcode

Hashcode == Address

Design a product-ready JVM for

Apache Harmony

17

• Good performance

• Simple, easy to learn

• But the algorithm is not parallel

– Cannot leverage multiple cores

• Has no generational support

• We developed GCv5

GCv4.1: Characteristics

Design a product-ready JVM for

Apache Harmony

18

• Minor collection: young objects are copied to
free area, large object space are mark-swept

Large objects Mature objects Free New objects

Large objects Mature objects Free New objects

Large objects Mature objects Free New objects

GCv5: Heap Layout

• Major collection: compact non-LOS and LOS

Design a product-ready JVM for

Apache Harmony

19

• Parallel pool-sharing marking:
1. Shared Pool for task sharing

2. Collector grabs task block from pool

3. One reference is a task

4. Pop one task from task block, push
into mark stack

5. Scan object in mark stack in DFS
order

6. If stack is full, grow into another
mark stack, put the full one into
pool

7. If stack is empty, take another task
from task block

Task Block
Mark Stack

Task Pool

Collector 1

�

�

�
��

Task Block
Mark Stack

Collector 2

�

�

�

�

�

�

Parallel Marking& Copying

Design a product-ready JVM for

Apache Harmony

20

• Two parallel compaction
algorithms
• Here shows Parallel LISP2

Compactor

1. Maintain a src-block list for each
dest block

2. Grab a src-block from the list
atomically in parallel for
compaction

GCv5: Parallel Compactor

Design a product-ready JVM for

Apache Harmony

21

• Assumptions
– Most objects die young

– Remember set do not keep lots of floating garbage

LOS MOS NOS

Root set

occupied

LOS MOS NOSoccupied

Before GC

After GC

Non-generational

Generational

LOS MOS NOS

Rem set

occupied

LOS MOS NOSoccupied

Before GC

After GC

Root set

GCv5: Generational Collection

Design a product-ready JVM for

Apache Harmony

22

GCv5: Runtime Adaptations

• Runtime adaptation for maximal GC

throughput

– Select major or minor collections

– Adjust the boundaries between spaces

– Switch between generational and non-

generational collections (off by default)

– Tune finalization speed

Design a product-ready JVM for

Apache Harmony

23

• Good performance

• Scalable on multiple cores

• Runtime adaptations

• But pause time in major collection is high

• Not support conservative collection

• We developed Tick

GCv5: Characteristics

Design a product-ready JVM for

Apache Harmony

24

• Tick is on-the-fly mark-sweep GC
– Non-moving, conservative GC possible

– Easy to “free” individual objects

• Heap layout

– Partition Sweep-Space into chunks

– Each chunk only holds objects of certain size

mutator

collectorRoot set enumeration

Tick: Overview

Design a product-ready JVM for

Apache Harmony

25

8B

12B

16B

24B

PFC pool array
8B

12B

16B

24B

8B

12B

16B

24B

32KB

64KB

128KB

1KB 1KB

1KB

Aligned free chunk list array Unaligned free chunk list array

96KB

128KB

32KB

1KB

>128KBSuper free chunk list

Mutator 1 Mutator 2

Tick: Heap Layout

Design a product-ready JVM for

Apache Harmony

26

• Mark-sweep has fragmentation problem

• Compact heap optionally when appropriate

– Fast compaction algorithm

23% 16%45% 65%80% 38% 6% 70%18% 31%14%87% 93% 55%10%

20~40%

<=20%

40~60%

60~80%

<100%

18% 10%6% 38%14% 31% 65% 87%80% 93%55%23% 45% 70%16%

51%

FULLFREE

Tick: Compactor

Design a product-ready JVM for

Apache Harmony

27

• Short collection pause time

– Target is at ms level

– Tradeoff with GC throughput

• Parallel and adaptive collection

• Working models

– Concurrent or stop-the-world

– Standalone or in generational GC

Tick: Characteristics

Design a product-ready JVM for

Apache Harmony

28

GC Modularity

• External modularity
– Different GC implementations can be specified in

command line

– Achieved by implementing the required GC
interfaces in include/open/gc.h

• Internal modularity
– GCv5 and Tick are implemented on the same code

base

– Achieved by coordinating different space
collection algorithms

– Shared GC verbose, GC verifier, etc.

Design a product-ready JVM for

Apache Harmony

29

Agenda

• Harmony and DRLVM modularity

• Garbage Collectors in DRLVM

• JIT Compilers in DRLVM

• Engineering infrastructure

Design a product-ready JVM for

Apache Harmony

30

DRLVM execution engines

• The Execution Manager

• Jitrino compilers:

– Jitrino.JET

– Jitrino.OPT
• Optimizations

• Pipeline Management Framework

• Internal profiler

Design a product-ready JVM for

Apache Harmony

31

31

The Execution Manager

• Keeps a registry for all
execution engines and profile
collectors available at run time

• Selects an execution engine to
compile a method by a VM
request according to the
configuration file

• Coordinates profile collection
and use between various
execution engines

• Supports asynchronous
recompilation in a separate
thread to utilize multi-core

Design a product-ready JVM for

Apache Harmony

32

Dynamic profilers
• EB_PROFILER

Entry/backedge profile. Collects 2 values for each method:

– number of times a method has been called (entry counter)

– number of loop interactions (backedge counter) performed in a
method

• EDGE_PROFILER
Edge profile. Collects 2 types of values for each method:

– Number of times a method has been called

– Number of times every branch in a method has been taken

• VALUE_PROFILER
Value profile. Collects up to N the most frequent values for each registered
profiling site in a method. Uses advanced Top-N-Value algorithm.

Design a product-ready JVM for

Apache Harmony

33

Jitrino compilers

• Jitrino.JET

– baseline compiler for IA32/Intel64

platforms

• Jitrino.OPT

– Optimizing compiler for IA32/Intel64/IPF

platforms

Design a product-ready JVM for

Apache Harmony

34

Jitrino Architecture

Design a product-ready JVM for

Apache Harmony

35

Jitrino.JET – baseline compiler

• Simple: no internal representation, just 2
passes over bytecode

• Small: ~500K code, ~14K NSLOCs

• Fast: Compilation speed ~ 10-20K methods
per second (1.5Ghz laptop)

• Supports JVMTI, VMMagic and can easily be
modified to support new features

• Produces more then 10 times faster code than
the interpreter (and ~2 times slower than the
code made by Jitrino.OPT)

Design a product-ready JVM for

Apache Harmony

36

Jitrino.JET: log sample

public static int max(int x, int y) {

return x > y ? x : y;

}

Prologue: <store all callee-save registers in use>

;; 0) ILOAD_0

;; 1) ILOAD_1

;; 2) IF_ICMPLE ->9<-

0x03EB00B6 cmp ebx, esi

0x03EB00B8 jle dword 0x11

;; 5) ILOAD_0

;; 6) GOTO ->10<-

0x03EB00BE mov [ebp+0xffffff14], ebx

0x03EB00C4 jmp 0xb

;; 9) ILOAD_1

0x03EB00C9 mov [ebp+0xffffff14], esi

;; 10) IRETURN

0x03EB00CF mov eax, [ebp+0xffffff14]

Epilogue: <restore all callee-save register in use>

Java method:

Design a product-ready JVM for

Apache Harmony

37

Jitrino.OPT – optimizing compiler

• The fast, aggressively optimizing compiler

• Pluggability facilitated by the Pipeline
Management Framework

• Features:
– High- and low-level intermediate representations

• Most optimizations run at the platform-independent high
level

– Supports edge and value profiles

– A flexible logging system enables tracing of major
Jitrino activities, including detailed IR dumps
during compilation

Design a product-ready JVM for

Apache Harmony

38

Jitrino.OPT optimizations

• Guarded devirtualization

• Global Code Motion

• Escape Analysis based optimizations:

– Synchronization elimination

– Scalar replacement

• Array initialization/copying optimizations

• Array bounds check elimination

…and many other most known optimizations

Design a product-ready JVM for

Apache Harmony

39

Advanced optimizations

• VM Magics and helper inlining
– Allow developers to write performance critical code in Java

using address arithmetic and low-level compiler intrinsics.

• Value profile guided devirtualization
– Effectively de-virtualize not only virtual but also interface

and abstract calls

• Lazy exceptions
– Create exception objects on demand, i.e. only if it’s actually

used in the exception handler

Design a product-ready JVM for

Apache Harmony

40

• PMF features:
– Standard interface for the pipeline steps (IR transformers)

– Nested pipelines

– Full control over the pipeline steps and their options through the
Java property mechanism

– Rich control over the logging based on JIT instances, pipelines, class
and method filters

• PMF details:
– http://harmony.apache.org/subcomponents/drlvm/JIT_PMF.html

Pipeline Management Framework

PMF - the JIT pluggability vehicle

Design a product-ready JVM for

Apache Harmony

41

Jitrino.OPT internal profiler

• To use iprof you need to create the iprof.cfg configuration file with the
profiler’s configuration and specify the following option:

-XX:jit.arg.codegen.iprof=on

• An example of the iprof output:

The internal profiler (iprof) in the Jitrino.OPT compiler can

instrument the code so that per-method counters of the

instructions executed at run time will be dumped.

Method name Insts ByteCodeSize MaxBBExec HottestBBNum …

java/lang/Thread.<clinit> 7 13 1 2 …

java/lang/Object.<init> 6445 1 6445 2 …

java/lang/Thread.<init> 2440 257 24 0 …

… … … … … …

Design a product-ready JVM for

Apache Harmony

42

JIT Resources

• Execution Manager:

http://harmony.apache.org/subcomponents/drlvm/EM.html

• Jitrino JIT Compiler:

http://harmony.apache.org/subcomponents/drlvm/JIT.html

• Pipeline Management Framework and Jitrino logging system:

http://harmony.apache.org/subcomponents/drlvm/JIT_PMF.html

• Jitrino.OPT internal profiler:

http://harmony.apache.org/subcomponents/drlvm/internal_profiler.html

• Harmony performance reports:

http://harmony.apache.org/performance.html

Design a product-ready JVM for

Apache Harmony

43

Agenda

• Harmony and DRLVM modularity

• Garbage Collectors in DRLVM

• JIT Compilers in DRLVM

• Engineering infrastructure

Design a product-ready JVM for

Apache Harmony

44

Engineering Infrastructure

• Tasks
– Maintain code integrity

– Build and publish snapshots

– Pre-release testing

– Maintain and benefit from modular
architecture

– Obtain and publish test results

– Define Milestone schedule/criteria

Design a product-ready JVM for

Apache Harmony

45

Harmony Quality Base

• Classlib test suite: 23K tests

• DRLVM test suites: 10K tests

• Stress, reliability test suites: ~300 tests

• Unit tests for 3rd party apps

– Eclipse: 40K tests, Geronimo: 600 tests, etc.

• Application automated test scenarios

– App servers, client and GUI apps

• Open Challenging Problems:

Design a product-ready JVM for

Apache Harmony

46

Quality Engineering

• Pre-commit testing
– Committer tests for 0.5 ~ 2 hours

• Code integrity testing
– Activates after any commit, fully automated

• Challenge: how to minimize traffic pressure to Apache
infrastructure

• Snapshot testing
– Up to 48 hours testing cycle, more tests

– Build snapshots for developers

• Pre-milestone testing
– Produce “stable builds”, go through all tests

Design a product-ready JVM for

Apache Harmony

47

What we offer

• For Harmony developers:
– Up-to-date Code Base Health Indicators

– Snapshots accompanied by testing results

• Windows/Linux on IA32/Intel64

• For Harmony Users:
– More stable snapshots, and

– Milestone “Stable builds” every 2~3 months,

– No official Harmony releases available yet

• For Harmony Testers:
– Build and Test Infrastructure 2.0 – easy add any test suite to the

testing cycle using test suite adaptors

Design a product-ready JVM for

Apache Harmony

48

Harmony Testing Process

Harmony

site

Integrity

testing 7x24

4 platforms
x

8 scenarios

TestsTestsTestsTestsTestsTestsHDKTomcat

EGAx48

Eclipse

tests

snapshot

stable

build

SVN

Snapshot

testing
4 platforms

x
26 scenarios

Pre-commit

tests

TestsTestsTestsTests
TestsEHWAJDK

Tools
DRL VM

Classlib

Design a product-ready JVM for

Apache Harmony

49

Research Exploiting Modularity

• Moxie JVM project (http://moxie.sourceforge.net/)

– A JVM written in Java uses Jitrino.OPT

• Java STM (Software Transactional Memory) in DRLVM

– JIT recognizes atomic constructs and injects calls

to the STM library into the code

• Dataflow Java based on DRLVM

– To introduce CSP (communicating sequential process) into

Java programming

Design a product-ready JVM for

Apache Harmony

50

Workloads Example: EIOffice

• Evermore EIOffice (http://www.evermoresw.com)
– Large scale office suite written in pure Java

– Extensively uses Swing/AWT

• EIOffice with Harmony (http://eio-harmony.sf.net)
– First release: v0.02

• Demo

Demo

Design a product-ready JVM for

Apache Harmony

51

Summary

• We develop DRLVM as a product-ready JVM
for Apache Harmony

• DRLVM benefits from its modularity design
in

– Developing, researching, and testing

• DRLVM has sophisticated GC and JIT
implementations

– Still under heavy development to enhance

– Real time GC, huge heap support, etc.

Design a product-ready JVM for

Apache Harmony

52

Thanks!

&

Questions?

